Menu Close

calculate-f-a-0-pi-dx-1-a-cosx-a-from-R-2-application-calculate-0-pi-dx-1-2cosx-




Question Number 35687 by prof Abdo imad last updated on 22/May/18
calculate f(a)=∫_0 ^π      (dx/(1−a cosx))  a from R .  2) application  calculate  ∫_0 ^π     (dx/(1−2cosx))
calculatef(a)=0πdx1acosxafromR.2)applicationcalculate0πdx12cosx
Commented by prof Abdo imad last updated on 22/May/18
vhangement tan((x/2))=t give  f(a) = ∫_0 ^∞       (1/(1−a ((1−t^2 )/(1+t^2 ))))  ((2dt)/(1+t^2 ))  = ∫_0 ^∞        ((2dt)/(1+t^2  −a(1−t^2 ))) = ∫_0 ^∞     ((2dt)/(1−a  +(1+a)t^2 ))  = (1/(1−a))∫_0 ^∞      ((2dt)/(1+((1+a)/(1−a))t^2 ))  case 1  ((1+a)/(1−a))>0  and a≠1  ⇒ (((1+a)(1−a))/((1−a)^2 ))>0 ⇒   1−a^2 >0 ⇒ ∣a∣<1   we get  f(a) = (2/(1−a))∫_0 ^∞     (dt/(1+((√((1+a)/(1−a)))t)^2 ))  =_(u= (√((1+a)/(1−a)))t)   (2/(1−a))∫_0 ^∞     (1/(1+u^2 )) ((√(1−a))/( (√(1+a)))) du  =(2/( (√(1−a))(√(1+a)))) .(π/2) =  (π/( (√(1−a^2 ))))  case2  ((1+a)/(1−a))<0  ⇒ ((1+a)/(a−1))>0 and  f(a) = (1/(1−a))∫_0 ^∞    ((2dt)/(1  −((a+1)/(a−1))t^2 ))  =_((√((a+1)/(a−1))) t =u)   (2/(1−a)) ∫_0 ^∞      (1/(1 −u^2 )) ((√(a−1))/( (√(a+1)))) du  = −(2/( (√(a^2  −1)))) ∫_0 ^∞     (du/(1−u^2 ))  = (1/( (√(a^2  −1)))) ∫_0 ^∞ { (1/(u−1)) −(1/(u+1))}du  = (1/( (√(a^2 −1)))) [ln∣((u−1)/(u+1))∣]_0 ^(+∞)  =0 .
vhangementtan(x2)=tgivef(a)=011a1t21+t22dt1+t2=02dt1+t2a(1t2)=02dt1a+(1+a)t2=11a02dt1+1+a1at2case11+a1a>0anda1(1+a)(1a)(1a)2>01a2>0a∣<1wegetf(a)=21a0dt1+(1+a1at)2=u=1+a1at21a011+u21a1+adu=21a1+a.π2=π1a2case21+a1a<01+aa1>0andf(a)=11a02dt1a+1a1t2=a+1a1t=u21a011u2a1a+1du=2a210du1u2=1a210{1u11u+1}du=1a21[lnu1u+1]0+=0.
Commented by prof Abdo imad last updated on 22/May/18
2)we have a =2 and ∣a∣>1 ⇒   ∫_0 ^π       (dx/(1−2cosx)) =0
2)wehavea=2anda∣>10πdx12cosx=0
Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18
∫_0 ^Π (dx/(1−acosx))  =(1/a)∫_0 ^Π (dx/((1/a)−cosx))  let k=1/a  =k∫_0 ^Π (dx/(k−((1−tan^2 ((x/2)))/(1+tan^2 ((x/2))))))  =k∫_0 ^Π (((1+tan^2 (x/2)))/(k+ktan^2 (x/2)−1+tan^2 (x/2)))dx  t=tan(x/2) dt=sec^2 (x/2)×(1/2)dx  =k∫_0 ^∞ ((2dt)/((k−1)+(k+1)t^2 ))  =2k∫_0 ^∞ (dt/((k+1)(((k−1)/(k+1))+t^2 )))  =((2k)/(k+1))∫_0 ^∞ (dt/(((k−1)/(k+1))+t^2 ))  =((2k)/(k+1))×(1/( (√((k−1)/(k+1)))))×∣tan^(−1) ((t/( (√((k−1)/(k+1)))))  )∣_0 ^∞   =((2k)/(k+1))×(((√(k+1)) )/( (√(k−1))))×((Π/2))  =(2/(1+(1/k)))×((√(1+(1/k)))/( (√(1−(1/k) ))))×((Π/2))    =(2/(1+a))×((√(1+a))/( (√(1−a))))×((Π/2))
0Πdx1acosx=1a0Πdx1acosxletk=1/a=k0Πdxk1tan2(x2)1+tan2(x2)=k0Π(1+tan2x2)k+ktan2x21+tan2x2dxt=tanx2dt=sec2x2×12dx=k02dt(k1)+(k+1)t2=2k0dt(k+1)(k1k+1+t2)=2kk+10dtk1k+1+t2=2kk+1×1k1k+1×tan1(tk1k+1)0=2kk+1×k+1k1×(Π2)=21+1k×1+1k11k×(Π2)=21+a×1+a1a×(Π2)

Leave a Reply

Your email address will not be published. Required fields are marked *