Question Number 35687 by prof Abdo imad last updated on 22/May/18

Commented by prof Abdo imad last updated on 22/May/18
![vhangement tan((x/2))=t give f(a) = ∫_0 ^∞ (1/(1−a ((1−t^2 )/(1+t^2 )))) ((2dt)/(1+t^2 )) = ∫_0 ^∞ ((2dt)/(1+t^2 −a(1−t^2 ))) = ∫_0 ^∞ ((2dt)/(1−a +(1+a)t^2 )) = (1/(1−a))∫_0 ^∞ ((2dt)/(1+((1+a)/(1−a))t^2 )) case 1 ((1+a)/(1−a))>0 and a≠1 ⇒ (((1+a)(1−a))/((1−a)^2 ))>0 ⇒ 1−a^2 >0 ⇒ ∣a∣<1 we get f(a) = (2/(1−a))∫_0 ^∞ (dt/(1+((√((1+a)/(1−a)))t)^2 )) =_(u= (√((1+a)/(1−a)))t) (2/(1−a))∫_0 ^∞ (1/(1+u^2 )) ((√(1−a))/( (√(1+a)))) du =(2/( (√(1−a))(√(1+a)))) .(π/2) = (π/( (√(1−a^2 )))) case2 ((1+a)/(1−a))<0 ⇒ ((1+a)/(a−1))>0 and f(a) = (1/(1−a))∫_0 ^∞ ((2dt)/(1 −((a+1)/(a−1))t^2 )) =_((√((a+1)/(a−1))) t =u) (2/(1−a)) ∫_0 ^∞ (1/(1 −u^2 )) ((√(a−1))/( (√(a+1)))) du = −(2/( (√(a^2 −1)))) ∫_0 ^∞ (du/(1−u^2 )) = (1/( (√(a^2 −1)))) ∫_0 ^∞ { (1/(u−1)) −(1/(u+1))}du = (1/( (√(a^2 −1)))) [ln∣((u−1)/(u+1))∣]_0 ^(+∞) =0 .](https://www.tinkutara.com/question/Q35716.png)
Commented by prof Abdo imad last updated on 22/May/18

Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18
