Menu Close

calculate-f-a-1-a-x-2-arctan-x-a-x-dx-with-a-real-




Question Number 60691 by maxmathsup by imad last updated on 24/May/19
calculate f(a) = ∫   (1−(a/x^2 )) arctan(x+(a/x))dx   with a real .
$${calculate}\:{f}\left({a}\right)\:=\:\int\:\:\:\left(\mathrm{1}−\frac{{a}}{{x}^{\mathrm{2}} }\right)\:{arctan}\left({x}+\frac{{a}}{{x}}\right){dx}\:\:\:{with}\:{a}\:{real}\:. \\ $$
Commented by maxmathsup by imad last updated on 27/May/19
by parts  u^′  =1−(a/x^2 )  and v =arctan(x+(a/x)) ⇒  f(a) =(x+(a/x))arctan(x+(a/x)) −∫  (x+(a/x))  ((1−(a/x^2 ))/(1+(x+(a/x))^2 )) dx  =(x+(a/x))arctan(x+(a/x))  −∫ (x+(a/x))((x^2 −a)/(x^2  +(x^2 +a^2 )^2 )) dx but  ∫  (x+(a/x)) ((x^2 −a)/(x^2  +(x^2  +a^2 )^2 )) =∫  ((x^4 −a^2 )/(x(x^2  +x^4  +2x^2 a^2  +a^4 ))) dx  =∫  ((x^4  −a^2 )/(x( x^4   +(2a^2 +1)x^2  +a^4 )))dx  let F(x) =((x^4 −a^2 )/(x(x^4  +(2a^2 +1)x^2  +a^4 )))  poles of F?  roots of x^4  +(2a^2 +1)x^2  +a^4 =0 ⇒t^2  +(2a^2 +1)t +a^4  =0    (t =x^2 )  Δ =(2a^2 +1)^2  −4a^4  =4a^4  +4a^2  +1 −4a^4  =4a^2  +1 ⇒  t_1 =((−2a^2 −1 +(√(4a^2  +1)))/2)  and  t_2 =((−2a^2 −1 −(√(4a^2  +1)))/2)  F(x) =((x^4 −a^2 )/(x(x^2 −t_1 )(x^2 −t_2 ))) =((x^4 −a^2 )/(x(x^2 +((2a^2  +1−(√(4a^2  +1)))/2))(x^2  +((2a^2  +1+(√(4a^2  +))1)/2))))   the decomposition of F(x) is at form  F(x) =(a/x) +((bx+c)/(x^2  +((2a^2  +1−(√(4a^2  +1)))/2)))  +((dx +e)/(x^2  +((2a^2 +1 +(√(4a^2  +1)))/2)))  a =lim_(x→a)  xF(x) =((a^4  −a^2 )/((a^2 −t_1 )(a^2 −t_2 )))  lim_(x→+∞)  xF(x)= 1 =a +b +d ⇒b+d =−a ....be continued....
$${by}\:{parts}\:\:{u}^{'} \:=\mathrm{1}−\frac{{a}}{{x}^{\mathrm{2}} }\:\:{and}\:{v}\:={arctan}\left({x}+\frac{{a}}{{x}}\right)\:\Rightarrow \\ $$$${f}\left({a}\right)\:=\left({x}+\frac{{a}}{{x}}\right){arctan}\left({x}+\frac{{a}}{{x}}\right)\:−\int\:\:\left({x}+\frac{{a}}{{x}}\right)\:\:\frac{\mathrm{1}−\frac{{a}}{{x}^{\mathrm{2}} }}{\mathrm{1}+\left({x}+\frac{{a}}{{x}}\right)^{\mathrm{2}} }\:{dx} \\ $$$$=\left({x}+\frac{{a}}{{x}}\right){arctan}\left({x}+\frac{{a}}{{x}}\right)\:\:−\int\:\left({x}+\frac{{a}}{{x}}\right)\frac{{x}^{\mathrm{2}} −{a}}{{x}^{\mathrm{2}} \:+\left({x}^{\mathrm{2}} +{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:{dx}\:{but} \\ $$$$\int\:\:\left({x}+\frac{{a}}{{x}}\right)\:\frac{{x}^{\mathrm{2}} −{a}}{{x}^{\mathrm{2}} \:+\left({x}^{\mathrm{2}} \:+{a}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\int\:\:\frac{{x}^{\mathrm{4}} −{a}^{\mathrm{2}} }{{x}\left({x}^{\mathrm{2}} \:+{x}^{\mathrm{4}} \:+\mathrm{2}{x}^{\mathrm{2}} {a}^{\mathrm{2}} \:+{a}^{\mathrm{4}} \right)}\:{dx} \\ $$$$=\int\:\:\frac{{x}^{\mathrm{4}} \:−{a}^{\mathrm{2}} }{{x}\left(\:{x}^{\mathrm{4}} \:\:+\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right){x}^{\mathrm{2}} \:+{a}^{\mathrm{4}} \right)}{dx}\:\:{let}\:{F}\left({x}\right)\:=\frac{{x}^{\mathrm{4}} −{a}^{\mathrm{2}} }{{x}\left({x}^{\mathrm{4}} \:+\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right){x}^{\mathrm{2}} \:+{a}^{\mathrm{4}} \right)} \\ $$$${poles}\:{of}\:{F}? \\ $$$${roots}\:{of}\:{x}^{\mathrm{4}} \:+\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right){x}^{\mathrm{2}} \:+{a}^{\mathrm{4}} =\mathrm{0}\:\Rightarrow{t}^{\mathrm{2}} \:+\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right){t}\:+{a}^{\mathrm{4}} \:=\mathrm{0}\:\:\:\:\left({t}\:={x}^{\mathrm{2}} \right) \\ $$$$\Delta\:=\left(\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} \:−\mathrm{4}{a}^{\mathrm{4}} \:=\mathrm{4}{a}^{\mathrm{4}} \:+\mathrm{4}{a}^{\mathrm{2}} \:+\mathrm{1}\:−\mathrm{4}{a}^{\mathrm{4}} \:=\mathrm{4}{a}^{\mathrm{2}} \:+\mathrm{1}\:\Rightarrow \\ $$$${t}_{\mathrm{1}} =\frac{−\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}\:+\sqrt{\mathrm{4}{a}^{\mathrm{2}} \:+\mathrm{1}}}{\mathrm{2}}\:\:{and}\:\:{t}_{\mathrm{2}} =\frac{−\mathrm{2}{a}^{\mathrm{2}} −\mathrm{1}\:−\sqrt{\mathrm{4}{a}^{\mathrm{2}} \:+\mathrm{1}}}{\mathrm{2}} \\ $$$${F}\left({x}\right)\:=\frac{{x}^{\mathrm{4}} −{a}^{\mathrm{2}} }{{x}\left({x}^{\mathrm{2}} −{t}_{\mathrm{1}} \right)\left({x}^{\mathrm{2}} −{t}_{\mathrm{2}} \right)}\:=\frac{{x}^{\mathrm{4}} −{a}^{\mathrm{2}} }{{x}\left({x}^{\mathrm{2}} +\frac{\mathrm{2}{a}^{\mathrm{2}} \:+\mathrm{1}−\sqrt{\mathrm{4}{a}^{\mathrm{2}} \:+\mathrm{1}}}{\mathrm{2}}\right)\left({x}^{\mathrm{2}} \:+\frac{\mathrm{2}{a}^{\mathrm{2}} \:+\mathrm{1}+\sqrt{\mathrm{4}{a}^{\mathrm{2}} \:+}\mathrm{1}}{\mathrm{2}}\right)} \\ $$$$\:{the}\:{decomposition}\:{of}\:{F}\left({x}\right)\:{is}\:{at}\:{form} \\ $$$${F}\left({x}\right)\:=\frac{{a}}{{x}}\:+\frac{{bx}+{c}}{{x}^{\mathrm{2}} \:+\frac{\mathrm{2}{a}^{\mathrm{2}} \:+\mathrm{1}−\sqrt{\mathrm{4}{a}^{\mathrm{2}} \:+\mathrm{1}}}{\mathrm{2}}}\:\:+\frac{{dx}\:+{e}}{{x}^{\mathrm{2}} \:+\frac{\mathrm{2}{a}^{\mathrm{2}} +\mathrm{1}\:+\sqrt{\mathrm{4}{a}^{\mathrm{2}} \:+\mathrm{1}}}{\mathrm{2}}} \\ $$$${a}\:={lim}_{{x}\rightarrow{a}} \:{xF}\left({x}\right)\:=\frac{{a}^{\mathrm{4}} \:−{a}^{\mathrm{2}} }{\left({a}^{\mathrm{2}} −{t}_{\mathrm{1}} \right)\left({a}^{\mathrm{2}} −{t}_{\mathrm{2}} \right)} \\ $$$${lim}_{{x}\rightarrow+\infty} \:{xF}\left({x}\right)=\:\mathrm{1}\:={a}\:+{b}\:+{d}\:\Rightarrow{b}+{d}\:=−{a}\:….{be}\:{continued}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *