Menu Close

calculate-f-a-1-a-x-2-arctan-x-a-x-dx-with-a-real-




Question Number 60691 by maxmathsup by imad last updated on 24/May/19
calculate f(a) = ∫   (1−(a/x^2 )) arctan(x+(a/x))dx   with a real .
calculatef(a)=(1ax2)arctan(x+ax)dxwithareal.
Commented by maxmathsup by imad last updated on 27/May/19
by parts  u^′  =1−(a/x^2 )  and v =arctan(x+(a/x)) ⇒  f(a) =(x+(a/x))arctan(x+(a/x)) −∫  (x+(a/x))  ((1−(a/x^2 ))/(1+(x+(a/x))^2 )) dx  =(x+(a/x))arctan(x+(a/x))  −∫ (x+(a/x))((x^2 −a)/(x^2  +(x^2 +a^2 )^2 )) dx but  ∫  (x+(a/x)) ((x^2 −a)/(x^2  +(x^2  +a^2 )^2 )) =∫  ((x^4 −a^2 )/(x(x^2  +x^4  +2x^2 a^2  +a^4 ))) dx  =∫  ((x^4  −a^2 )/(x( x^4   +(2a^2 +1)x^2  +a^4 )))dx  let F(x) =((x^4 −a^2 )/(x(x^4  +(2a^2 +1)x^2  +a^4 )))  poles of F?  roots of x^4  +(2a^2 +1)x^2  +a^4 =0 ⇒t^2  +(2a^2 +1)t +a^4  =0    (t =x^2 )  Δ =(2a^2 +1)^2  −4a^4  =4a^4  +4a^2  +1 −4a^4  =4a^2  +1 ⇒  t_1 =((−2a^2 −1 +(√(4a^2  +1)))/2)  and  t_2 =((−2a^2 −1 −(√(4a^2  +1)))/2)  F(x) =((x^4 −a^2 )/(x(x^2 −t_1 )(x^2 −t_2 ))) =((x^4 −a^2 )/(x(x^2 +((2a^2  +1−(√(4a^2  +1)))/2))(x^2  +((2a^2  +1+(√(4a^2  +))1)/2))))   the decomposition of F(x) is at form  F(x) =(a/x) +((bx+c)/(x^2  +((2a^2  +1−(√(4a^2  +1)))/2)))  +((dx +e)/(x^2  +((2a^2 +1 +(√(4a^2  +1)))/2)))  a =lim_(x→a)  xF(x) =((a^4  −a^2 )/((a^2 −t_1 )(a^2 −t_2 )))  lim_(x→+∞)  xF(x)= 1 =a +b +d ⇒b+d =−a ....be continued....
bypartsu=1ax2andv=arctan(x+ax)f(a)=(x+ax)arctan(x+ax)(x+ax)1ax21+(x+ax)2dx=(x+ax)arctan(x+ax)(x+ax)x2ax2+(x2+a2)2dxbut(x+ax)x2ax2+(x2+a2)2=x4a2x(x2+x4+2x2a2+a4)dx=x4a2x(x4+(2a2+1)x2+a4)dxletF(x)=x4a2x(x4+(2a2+1)x2+a4)polesofF?rootsofx4+(2a2+1)x2+a4=0t2+(2a2+1)t+a4=0(t=x2)Δ=(2a2+1)24a4=4a4+4a2+14a4=4a2+1t1=2a21+4a2+12andt2=2a214a2+12F(x)=x4a2x(x2t1)(x2t2)=x4a2x(x2+2a2+14a2+12)(x2+2a2+1+4a2+12)thedecompositionofF(x)isatformF(x)=ax+bx+cx2+2a2+14a2+12+dx+ex2+2a2+1+4a2+12a=limxaxF(x)=a4a2(a2t1)(a2t2)limx+xF(x)=1=a+b+db+d=a.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *