calculate-f-a-1-a-x-2-arctan-x-a-x-dx-with-a-real- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60691 by maxmathsup by imad last updated on 24/May/19 calculatef(a)=∫(1−ax2)arctan(x+ax)dxwithareal. Commented by maxmathsup by imad last updated on 27/May/19 bypartsu′=1−ax2andv=arctan(x+ax)⇒f(a)=(x+ax)arctan(x+ax)−∫(x+ax)1−ax21+(x+ax)2dx=(x+ax)arctan(x+ax)−∫(x+ax)x2−ax2+(x2+a2)2dxbut∫(x+ax)x2−ax2+(x2+a2)2=∫x4−a2x(x2+x4+2x2a2+a4)dx=∫x4−a2x(x4+(2a2+1)x2+a4)dxletF(x)=x4−a2x(x4+(2a2+1)x2+a4)polesofF?rootsofx4+(2a2+1)x2+a4=0⇒t2+(2a2+1)t+a4=0(t=x2)Δ=(2a2+1)2−4a4=4a4+4a2+1−4a4=4a2+1⇒t1=−2a2−1+4a2+12andt2=−2a2−1−4a2+12F(x)=x4−a2x(x2−t1)(x2−t2)=x4−a2x(x2+2a2+1−4a2+12)(x2+2a2+1+4a2+12)thedecompositionofF(x)isatformF(x)=ax+bx+cx2+2a2+1−4a2+12+dx+ex2+2a2+1+4a2+12a=limx→axF(x)=a4−a2(a2−t1)(a2−t2)limx→+∞xF(x)=1=a+b+d⇒b+d=−a….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-x-3-1-x-2-1-x-2-dx-Next Next post: find-arctan-2cosx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.