Question Number 54011 by maxmathsup by imad last updated on 27/Jan/19

Commented by maxmathsup by imad last updated on 28/Jan/19

Commented by maxmathsup by imad last updated on 28/Jan/19
![2) we have U_n =∫_(−(1/(na))) ^(1/(na)) (dx/( (√(1+ax))−(√(1−ax)))) =2lim_(ξ→0) ∫_ξ ^(1/(na)) (dx/( (√(1+ax))−(√(1−ax)))) but ∫_ξ ^(1/(na)) (dx/( (√(1+ax))−(√(1−ax)))) =[(1/a)(2(√(1+ax))+ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣)]_(x=ξ) ^(1/(na)) =(1/a){2(√(1+(1/n)))+ln∣((1+(√(1+(1/n))))/(1−(√(1−(1/n)))))∣−2(√(1+aξ))−ln∣((1+(√(1+aξ)))/(1−(√(1−aξ))))∣} but we cant find lim U_n from this quantity be continued...](https://www.tinkutara.com/question/Q54063.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
![∫(((√(1+ax)) +(√(1−ax)))/(2ax))dx ∫((√(1+ax))/(2ax))dx+∫((√(1−ax))/(2ax))dx t_1 ^2 =1+ax 2t_1 dt=adx t_2 ^2 =1−ax 2t_2 dt=−adx ∫((t_1 ×2t_1 dt)/(2a(t_1 ^2 −1)))+∫((t_2 ×−2t_2 )/(2a×(1−t_1 ^2 )))dt_2 (1/a)∫((t_1 ^2 −1+1)/(t_1 ^2 −1))dt_1 +(1/a)∫((1−t_2 ^2 −1)/(1−t_2 ^2 ))dt_2 (1/a)[∫dt_1 +∫(dt_1 /(t_2 ^2 −1))+∫dt_2 −∫(dt_2 /(1−t_2 ^2 ))] now use formula...](https://www.tinkutara.com/question/Q54018.png)