Menu Close

calculate-f-a-dx-1-ax-1-ax-with-a-gt-0-2-calculate-U-n-1-na-1-na-dx-1-ax-1-ax-with-n-from-N-and-n-gt-1-find-lim-n-U-n-and-study-the-c




Question Number 54011 by maxmathsup by imad last updated on 27/Jan/19
calculate f(a) =∫    (dx/( (√(1+ax))−(√(1−ax))))  with a>0 .  2) calculate  U_n =∫_(−(1/(na))) ^(1/(na))   (dx/( (√(1+ax))−(√(1−ax))))  with n from N and n>1  find lim_(n→+∞)  U_n    and study the convergence of Σ U_n
calculatef(a)=dx1+ax1axwitha>0.2)calculateUn=1na1nadx1+ax1axwithnfromNandn>1findlimn+UnandstudytheconvergenceofΣUn
Commented by maxmathsup by imad last updated on 28/Jan/19
1) we have f(a) =_(ax =t)   ∫     (dt/(a((√(1+t))−(√(1−t)))))  ⇒  af(a) =∫  (((√(1+t))+(√(1−t)))/(2t)) dt = (1/2) ∫ ((√(1+t))/t)dt +(1/2)∫ ((√(1−t))/t) dt ⇒  2af(a) = ∫ ((√(1+t))/t) dt +∫ ((√(1−t))/t) dt  but  ∫ ((√(1+t))/t)dt  =_(1+t=u^2 )     ∫   (u/(u^2 −1)) (2u)du =2 ∫ (u^2 /(u^2 −1)) du  =2 ∫  ((u^2 −1+1)/(u^2 −1)) =2u +2 ∫  (du/(u^2 −1)) =2u  + ∫ ((1/(1−u)) +(1/(1+u)))du  =2u +ln∣((1+u)/(1−u))∣ +c_0   =2(√(1+t))+ln∣((1+(√(1+t)))/(1−(√(1−t))))∣ +c_0   =2 (√(1+ax)) +ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣  +c_0    also we have   ∫ ((√(1−t))/t) dt =_(1−t =u^2 )     ∫  (u/(1−u^2 )) (−2u)du = 2 ∫  (u^2 /(u^2  −1)) ⇒  2af(a) =2 ∫ ((√(1+t))/t) dt ⇒f(a) =(1/a){2(√(1+ax)) +ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣} .  f(a) =(1/a){2(√(1+ax))+ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣} +C .
1)wehavef(a)=ax=tdta(1+t1t)af(a)=1+t+1t2tdt=121+ttdt+121ttdt2af(a)=1+ttdt+1ttdtbut1+ttdt=1+t=u2uu21(2u)du=2u2u21du=2u21+1u21=2u+2duu21=2u+(11u+11+u)du=2u+ln1+u1u+c0=21+t+ln1+1+t11t+c0=21+ax+ln1+1+ax11ax+c0alsowehave1ttdt=1t=u2u1u2(2u)du=2u2u212af(a)=21+ttdtf(a)=1a{21+ax+ln1+1+ax11ax}.f(a)=1a{21+ax+ln1+1+ax11ax}+C.
Commented by maxmathsup by imad last updated on 28/Jan/19
2) we have U_n =∫_(−(1/(na))) ^(1/(na))    (dx/( (√(1+ax))−(√(1−ax)))) =2lim_(ξ→0)  ∫_ξ ^(1/(na))   (dx/( (√(1+ax))−(√(1−ax))))  but ∫_ξ ^(1/(na))     (dx/( (√(1+ax))−(√(1−ax)))) =[(1/a)(2(√(1+ax))+ln∣((1+(√(1+ax)))/(1−(√(1−ax))))∣)]_(x=ξ) ^(1/(na))   =(1/a){2(√(1+(1/n)))+ln∣((1+(√(1+(1/n))))/(1−(√(1−(1/n)))))∣−2(√(1+aξ))−ln∣((1+(√(1+aξ)))/(1−(√(1−aξ))))∣}  but we cant find lim U_n  from this quantity  be continued...
2)wehaveUn=1na1nadx1+ax1ax=2limξ0ξ1nadx1+ax1axbutξ1nadx1+ax1ax=[1a(21+ax+ln1+1+ax11ax)]x=ξ1na=1a{21+1n+ln1+1+1n111n21+aξln1+1+aξ11aξ}butwecantfindlimUnfromthisquantitybecontinued
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
∫(((√(1+ax)) +(√(1−ax)))/(2ax))dx  ∫((√(1+ax))/(2ax))dx+∫((√(1−ax))/(2ax))dx  t_1 ^2 =1+ax   2t_1 dt=adx  t_2 ^2 =1−ax  2t_2 dt=−adx  ∫((t_1 ×2t_1 dt)/(2a(t_1 ^2 −1)))+∫((t_2 ×−2t_2 )/(2a×(1−t_1 ^2 )))dt_2   (1/a)∫((t_1 ^2 −1+1)/(t_1 ^2 −1))dt_1 +(1/a)∫((1−t_2 ^2 −1)/(1−t_2 ^2 ))dt_2   (1/a)[∫dt_1 +∫(dt_1 /(t_2 ^2 −1))+∫dt_2 −∫(dt_2 /(1−t_2 ^2 ))]  now use formula...
1+ax+1ax2axdx1+ax2axdx+1ax2axdxt12=1+ax2t1dt=adxt22=1ax2t2dt=adxt1×2t1dt2a(t121)+t2×2t22a×(1t12)dt21at121+1t121dt1+1a1t2211t22dt21a[dt1+dt1t221+dt2dt21t22]nowuseformula

Leave a Reply

Your email address will not be published. Required fields are marked *