Menu Close

calculate-f-dx-x-2-2x-cos-1-2-calculate-g-sin-x-2-2x-cos-1-2-dx-3-find-f-n-with-n-integr-natural-4-calculate-dx




Question Number 47295 by maxmathsup by imad last updated on 07/Nov/18
calculate f(α) =∫_(−∞) ^(+∞)     (dx/(x^2  +2x cosα +1))  2) calculate g(α)=∫_(−∞) ^(+∞)   ((sinα)/((x^2  +2x cosα+1)^2 ))dx  3) find f^((n)) (α) with n integr natural .  4) calculate ∫_(−∞) ^(+∞)    (dx/(x^2  +x +1)) and  ∫_(−∞) ^(+∞)     (dx/((x^2  +x+1)^2 ))
calculatef(α)=+dxx2+2xcosα+12)calculateg(α)=+sinα(x2+2xcosα+1)2dx3)findf(n)(α)withnintegrnatural.4)calculate+dxx2+x+1and+dx(x2+x+1)2
Commented by maxmathsup by imad last updated on 08/Nov/18
sorry the Q is calculate ∫_(−∞) ^(+∞)   ((2x sinα)/((x^2  +2x cosα +1)^2 ))dx.
sorrytheQiscalculate+2xsinα(x2+2xcosα+1)2dx.
Commented by maxmathsup by imad last updated on 08/Nov/18
let rectfy  g((π/3)) =∫_(−∞) ^(+∞)    ((2x sin((π/(3 ))))/((x^2  +x+1)^2 ))dx =∫_(−∞) ^(+∞)  ((x(√3))/((x^2  +x+1)^2 ))dx ⇒  ∫_(−∞) ^(+∞)   (x/((x^2  +x+1)^2 ))dx =(1/( (√3)))g((π/3)) =−(1/( (√3))) ((π cos((π/3)))/(sin^2 ((π/3)))) =((−π)/(2(√3))) (4/3) =((−2π)/(3(√3))) .
letrectfyg(π3)=+2xsin(π3)(x2+x+1)2dx=+x3(x2+x+1)2dx+x(x2+x+1)2dx=13g(π3)=13πcos(π3)sin2(π3)=π2343=2π33.
Commented by maxmathsup by imad last updated on 08/Nov/18
2) we have f^′ (α) =∫_(−∞) ^(+∞)  (∂/∂α)((1/(x^2  +2x cosα +1)))dx   =∫_(−∞) ^(+∞)   ((2x sinα)/((x^2  +2x cosα +1)^2 ))dx =g(α) ⇒g(α)=f^′ (α)  case 1  sinα>0 ⇒f(α) =(π/(sinα)) ⇒f^′ (α)=−((π cosα)/(sin^2 α)) =g(α)  case z  sinα<0 ⇒f(α)=−(π/(sinα)) ⇒f^′ (α)=((π cosα)/(sin^2 α)) .
2)wehavef(α)=+α(1x2+2xcosα+1)dx=+2xsinα(x2+2xcosα+1)2dx=g(α)g(α)=f(α)case1sinα>0f(α)=πsinαf(α)=πcosαsin2α=g(α)casezsinα<0f(α)=πsinαf(α)=πcosαsin2α.
Commented by maxmathsup by imad last updated on 08/Nov/18
1) let determine the poles of ϕ(z) =(1/(z^2  +2zcosα +1))  Δ^′ =cos^2 −1=−sin^2 α =(isinα)^2  ⇒z_1 = −cosα +isinα =−e^(−iα)   z_2 = −cosα−isinα =−e^(iα)   ⇒ϕ(z)=(1/((z+e^(iα) )(z +e^(−iα) )))=(1/((z−z_1 )(z−z_2 )))  case 1    sinα>0  residus theorem give ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,z_1 )  =2iπ .(1/(z_1 −z_2 )) =2iπ (1/(2isinα)) =(π/(sinα)) ⇒f(α)=(π/(sinα))  case 2  sinα<0    ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_2 )=2iπ (1/(z_2 −z_1 )) =2iπ (1/(−2isinα))  =−(π/(sinα)) ⇒f(α)=−(π/(sinα)) .
1)letdeterminethepolesofφ(z)=1z2+2zcosα+1Δ=cos21=sin2α=(isinα)2z1=cosα+isinα=eiαz2=cosαisinα=eiαφ(z)=1(z+eiα)(z+eiα)=1(zz1)(zz2)case1sinα>0residustheoremgive+φ(z)dz=2iπRes(φ,z1)=2iπ.1z1z2=2iπ12isinα=πsinαf(α)=πsinαcase2sinα<0+φ(z)dz=2iπRes(φ,z2)=2iπ1z2z1=2iπ12isinα=πsinαf(α)=πsinα.
Commented by maxmathsup by imad last updated on 08/Nov/18
4 )calculate ∫_(−∞) ^(+∞)    ((xdx)/((x^2  +x+1)^2 )) .
4)calculate+xdx(x2+x+1)2.
Commented by maxmathsup by imad last updated on 08/Nov/18
4) ★we have x^2 +x +1 =x^2 +2(1/2)x +1 =x^2  +2x cos((π/3))+1 ⇒  ∫_(−∞) ^(+∞)    (dx/(x^2 +x+1)) =f((π/3)) =(π/(sin((π/3)))) =((2π)/( (√3)))  another way  ∫_(−∞) ^(+∞)   (dx/(x^2 +x+1)) =∫_(−∞) ^(+∞)    (dx/((x+(1/2))^2 +(3/4)))  =_(x+(1/2)=((√3)/2)t)     ∫_(−∞) ^(+∞)    (1/((3/(4 ))(1+t^2 ))) ((√3)/2)dt =(4/3) ((√3)/2) ∫_(−∞) ^(+∞)   (dt/(1+t^2 )) =(2/( (√3))) [arctan(t)]_(−∞) ^(+∞)   =(2/( (√3))){(π/2)+(π/2)} =((2π)/( (√3))) .  ★ we have g((π/3))=∫_(−∞) ^(+∞)   ((sin((π/3)))/((x^2  +x+1)^2 )) dx ⇒  ∫_(−∞) ^(+∞)      (dx/((x^2  +x+1)^2 )) =(1/(sin((π/3)))) g((π/3)) =(2/( (√3))) ((π cos((π/3)))/(sin^2 ((π/3)))) =(π/( (√3))) (1/(3/4)) =((4π)/(3(√3))) .
4)wehavex2+x+1=x2+212x+1=x2+2xcos(π3)+1+dxx2+x+1=f(π3)=πsin(π3)=2π3anotherway+dxx2+x+1=+dx(x+12)2+34=x+12=32t+134(1+t2)32dt=4332+dt1+t2=23[arctan(t)]+=23{π2+π2}=2π3.wehaveg(π3)=+sin(π3)(x2+x+1)2dx+dx(x2+x+1)2=1sin(π3)g(π3)=23πcos(π3)sin2(π3)=π3134=4π33.

Leave a Reply

Your email address will not be published. Required fields are marked *