Menu Close

calculate-f-t-0-cos-tx-1-tx-2-2-dx-with-t-0-2-find-the-values-of-0-cos-2x-1-2x-2-2-dx-and-0-cosx-2-x-2-2-dx-




Question Number 38470 by maxmathsup by imad last updated on 25/Jun/18
calculate f(t)=∫_0 ^∞   ((cos(tx))/((1+tx^2 )^2 )) dx with t≥0  2) find the values of ∫_0 ^∞   ((cos(2x))/((1+2x^2 )^2 ))dx  and ∫_0 ^∞    ((cosx)/((2+x^2 )^2 ))dx
calculatef(t)=0cos(tx)(1+tx2)2dxwitht02)findthevaluesof0cos(2x)(1+2x2)2dxand0cosx(2+x2)2dx
Commented by math khazana by abdo last updated on 26/Jun/18
t>0
t>0
Commented by math khazana by abdo last updated on 27/Jun/18
we have 2f(x)=∫_(−∞) ^(+∞)   ((cos(tx))/((1+tx^2 )^2 ))dx  =Re( ∫_(−∞) ^(+∞)    (e^(itx) /((1+tx^2 )^2 ))dx) let consider  ϕ(z) = (e^(itz) /((tz^2  +1)^2 )) we have   ϕ(z)=  (e^(itz) /(t^2 (z^2  +(1/t))^2 )) = (e^(itz) /(t^2 (z−(i/( (√t))))^2 (z+(i/( (√t))))^2 ))  the poles of ϕ are (i/( (√t))) and ((−i)/( (√t))) (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,(i/( (√t))))  but  Res(ϕ,(i/( (√t))))=lim_(z→(i/( (√t))))     (1/((2−1)!)){ (z−(i/( (√t))))^2 ϕ(z)}^((1))   =lim_(z→(i/( (√t))))     (1/t^2 ){   (e^(itz) /((z+(i/( (√t))))^2 ))}^((1))   =lim_(z→(i/( (√t))))  (1/t^2 ){  ((it e^(itz) (z+(i/( (√t))))^2  −2(z+(i/( (√t))))e^(itz) )/((z+(i/( (√t))))^4 ))}  =lim_(z→(i/( (√t))))    (1/t^2 ){  ((it e^(itz) (z+(i/( (√t)))) −2 e^(itz) )/((z+(i/( (√t))))^3 ))}  =(1/t^2 )((it e^(it(i/( (√t)))) (((2i)/( (√t))))−2 e^(it((i/( (√t))))) )/((((2i)/( (√t))))^3 ))=(1/t^2 ) ((−2(√t)e^(−(√t))  −2 e^(−(√t)) )/((−8i)/(t(√t))))  =((t(√t))/t^2 ) (((1+(√t))e^(−(√t)) )/(4i)) =((√t)/(4ti))(1+(√t))e^(−(√t))   =(((t+(√t))e^(−(√t)) )/(4ti)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (((t+(√t))e^(−(√t)) )/(4it)) =(π/(2t)) (t+(√t))e^(−(√t))   2f(x)= Re( ∫_(−∞) ^(+∞) ϕ(z)dz) ⇒  f(x)= (π/(4t))(t+(√t))e^(−(√t))         (t>0)  2)  ∫_0 ^∞    ((cos(2x))/((1+2x^2 )^2 ))dx=f(2) =(π/8)(2+(√2))e^(−(√2))
wehave2f(x)=+cos(tx)(1+tx2)2dx=Re(+eitx(1+tx2)2dx)letconsiderφ(z)=eitz(tz2+1)2wehaveφ(z)=eitzt2(z2+1t)2=eitzt2(zit)2(z+it)2thepolesofφareitandit(doubles)+φ(z)dz=2iπRes(φ,it)butRes(φ,it)=limzit1(21)!{(zit)2φ(z)}(1)=limzit1t2{eitz(z+it)2}(1)=limzit1t2{iteitz(z+it)22(z+it)eitz(z+it)4}=limzit1t2{iteitz(z+it)2eitz(z+it)3}=1t2iteitit(2it)2eit(it)(2it)3=1t22tet2et8itt=ttt2(1+t)et4i=t4ti(1+t)et=(t+t)et4ti+φ(z)dz=2iπ(t+t)et4it=π2t(t+t)et2f(x)=Re(+φ(z)dz)f(x)=π4t(t+t)et(t>0)2)0cos(2x)(1+2x2)2dx=f(2)=π8(2+2)e2
Commented by math khazana by abdo last updated on 27/Jun/18
let calculate I =∫_0 ^∞    ((cosx)/((2+x^2 )^2 ))dx  2I =∫_(−∞) ^(+∞)   ((cosx)/((2+x^2 )^2 ))dx=Re( ∫_(−∞) ^(+∞)   (e^(ix) /((x^2  +2)^2 ))dx)  let ϕ(z)= (e^(iz) /((z^2  +2)^2 ))  ϕ(z)= (e^(iz) /((z−i(√2))^2 (z+i(√2))^2 )) so the polesof ϕ are  i(√2) and −i(√2) (doubles)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i(√2))  Res(ϕ,i(√2))=lim_(z→i(√2))   (1/((2−1)!)){ (z−i(√2))^2 ϕ(z)}^((1))   =lim_(z→i(√2))    {  (e^(iz) /((z+i(√2))^2 ))}^((1))   =lim_(z→i(√2))   ((i e^(iz) (z+i(√2))^2  −2(z+i(√2))e^(iz) )/((z+i(√2))^4 ))  =lim_(z→i(√2))     ((i e^(iz) (z+i(√2)) −2 e^(iz) )/((z+i(√2))^3 ))  =((i e^(i(i(√2))) (2i(√2)) −2 e^(i(i(√2))) )/((2i(√2))^3 ))  = ((−2(√2) e^(−(√2))   −2 e^(−(√2)) )/(−8i(2(√2)))) =(((1+(√2))e^(−(√2)) )/(8i(√2)))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ (((1+(√2))e^(−(√2)) )/(8i(√2)))  = (π/(4(√2)))(1+(√2))e^(−(√2))   2I =Re( ∫_(−∞) ^(+∞)  ϕ(z)dz) ⇒  I = (π/(8(√2)))(1+(√2))e^(−(√2)) .
letcalculateI=0cosx(2+x2)2dx2I=+cosx(2+x2)2dx=Re(+eix(x2+2)2dx)letφ(z)=eiz(z2+2)2φ(z)=eiz(zi2)2(z+i2)2sothepolesofφarei2andi2(doubles)+φ(z)dz=2iπRes(φ,i2)Res(φ,i2)=limzi21(21)!{(zi2)2φ(z)}(1)=limzi2{eiz(z+i2)2}(1)=limzi2ieiz(z+i2)22(z+i2)eiz(z+i2)4=limzi2ieiz(z+i2)2eiz(z+i2)3=iei(i2)(2i2)2ei(i2)(2i2)3=22e22e28i(22)=(1+2)e28i2+φ(z)dz=2iπ(1+2)e28i2=π42(1+2)e22I=Re(+φ(z)dz)I=π82(1+2)e2.
Commented by abdo.msup.com last updated on 27/Jun/18
f(t)=(π/(4t))(t+(√t))e^(−(√t))
f(t)=π4t(t+t)et

Leave a Reply

Your email address will not be published. Required fields are marked *