Menu Close

calculate-F-x-0-dt-1-1-x-1-t-2-2-




Question Number 39389 by maxmathsup by imad last updated on 05/Jul/18
calculate F(x) = ∫_0 ^∞       (dt/(1+(1+x(1+t^2 ))^2 ))
calculateF(x)=0dt1+(1+x(1+t2))2
Commented by prof Abdo imad last updated on 24/Jul/18
changement t=tanθ give  F(x) = ∫_0 ^(π/2)     (((1+tan^2 θ))/(1+{1+x(1+tan^2 θ)}^2 ))dθ  = ∫_0 ^(π/2)    (1/(cos^2 θ{1+(x/(cos^2 θ))}^2 ))dθ  = ∫_0 ^(π/2)   ((cos^2 θ)/({x +cos^2 θ}^2 ))dθ  =∫_0 ^(π/2)    ((x+cos^2 θ−x)/((x+cos^2 θ)^2 ))dθ  = ∫_0 ^(π/2)   (dθ/(x +cos^2 θ)) −x   ∫_0 ^(π/2)    (dθ/((x+cos^2 θ)^2 )) but  ∫_0 ^(π/2)    (dθ/(x+cos^2 θ)) = ∫_0 ^(π/2)    (dθ/(x+((1+cos(2θ))/2)))  = ∫_0 ^(π/2)    ((2dθ)/(2x+1+cos(2θ))) =_(2θ=t)   ∫_0 ^π     (dt/(2x+1+cos(t)))  =_(u=tan((t/2)))      ∫_0 ^∞      (1/(2x+1 +((1−u^2 )/(1+u^2 )))) ((2du)/(1+u^2 ))  = ∫_0 ^∞       ((2du)/((2x+1)u^2  +1−u^2 ))  = ∫_0 ^∞       ((2du)/(2xu^2  +1))  if x>0   ∫_0 ^∞   ((2du)/(1+2xu^2 )) =_((√(2x))u=α)   ∫_0 ^∞   (2/(1+α^2 )) (dα/( (√(2x))))  =((√2)/( (√x))) .(π/2)  if x<0  ∫_0 ^∞    ((2du)/(1+2xu^2 ))  = ∫_0 ^∞   ((2du)/(1−((√(−2x))u)^2 ))  =∫_0 ^∞      ((2du)/((1−(√(2x))u)(1+(√(2x))u)))  = ∫_0 ^∞     { (1/(1−(√(2x))u)) +(1/(1+(√(2x))u))}du  =[ln∣((1+(√(2x))u)/(1−(√(2x))u))∣]_0 ^(+∞)  =0  so  ∫_0 ^(π/2)    (dθ/(x+cos^2 θ)) =((π(√2))/( (√(2x)))) if x>0  ∫_0 ^(π/2)   (dθ/(x+cos^2 θ)) =0 if x<0
changementt=tanθgiveF(x)=0π2(1+tan2θ)1+{1+x(1+tan2θ)}2dθ=0π21cos2θ{1+xcos2θ}2dθ=0π2cos2θ{x+cos2θ}2dθ=0π2x+cos2θx(x+cos2θ)2dθ=0π2dθx+cos2θx0π2dθ(x+cos2θ)2but0π2dθx+cos2θ=0π2dθx+1+cos(2θ)2=0π22dθ2x+1+cos(2θ)=2θ=t0πdt2x+1+cos(t)=u=tan(t2)012x+1+1u21+u22du1+u2=02du(2x+1)u2+1u2=02du2xu2+1ifx>002du1+2xu2=2xu=α021+α2dα2x=2x.π2ifx<002du1+2xu2=02du1(2xu)2=02du(12xu)(1+2xu)=0{112xu+11+2xu}du=[ln1+2xu12xu]0+=0so0π2dθx+cos2θ=π22xifx>00π2dθx+cos2θ=0ifx<0
Commented by prof Abdo imad last updated on 24/Jul/18
let w(x)= ∫_0 ^(π/2)    (dθ/(x+cos^2 θ)) ⇒  w^′ (x) =−∫_0 ^(π/2)     (dθ/((x +cos^2 θ)^2 )) ⇒  ∫_0 ^(π/2)    (dθ/((x+cos^2 θ)^2 )) =−w^′ (x) so  if x>0 w(x)=((π(√2))/(2(√x))) ⇒w^′ (x)=(π/( (√2))) (−(1/(2x(√x))))  =−(π/(2(√2)x(√x))) ⇒ ∫_0 ^(π/2)     (dθ/((x+cos^2 θ)^2 )) = (π/(2(√2)x(√x)))  and F(x)=((π(√2))/(2(√x))) −x (π/(2(√2)x(√x)))  =((π(√2))/(2(√x))) −(π/(2(√2)(√x))) =(π/( (√x))){((√2)/2) −(1/(2(√2)))}=(π/( (√x))){(2/(4(√2)))}  = (π/(2(√(2x))))  if x<0  w(x)=0 ⇒ ∫_0 ^(π/2)    (dθ/((x+cos^2 θ)^2 )) =0 ⇒  F(x) = 0  because ∫_0 ^(π/2)   (dθ/(x+cos^2 θ)) =0
letw(x)=0π2dθx+cos2θw(x)=0π2dθ(x+cos2θ)20π2dθ(x+cos2θ)2=w(x)soifx>0w(x)=π22xw(x)=π2(12xx)=π22xx0π2dθ(x+cos2θ)2=π22xxandF(x)=π22xxπ22xx=π22xπ22x=πx{22122}=πx{242}=π22xifx<0w(x)=00π2dθ(x+cos2θ)2=0F(x)=0because0π2dθx+cos2θ=0

Leave a Reply

Your email address will not be published. Required fields are marked *