calculate-F-x-0-dt-1-1-x-1-t-2-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 39389 by maxmathsup by imad last updated on 05/Jul/18 calculateF(x)=∫0∞dt1+(1+x(1+t2))2 Commented by prof Abdo imad last updated on 24/Jul/18 changementt=tanθgiveF(x)=∫0π2(1+tan2θ)1+{1+x(1+tan2θ)}2dθ=∫0π21cos2θ{1+xcos2θ}2dθ=∫0π2cos2θ{x+cos2θ}2dθ=∫0π2x+cos2θ−x(x+cos2θ)2dθ=∫0π2dθx+cos2θ−x∫0π2dθ(x+cos2θ)2but∫0π2dθx+cos2θ=∫0π2dθx+1+cos(2θ)2=∫0π22dθ2x+1+cos(2θ)=2θ=t∫0πdt2x+1+cos(t)=u=tan(t2)∫0∞12x+1+1−u21+u22du1+u2=∫0∞2du(2x+1)u2+1−u2=∫0∞2du2xu2+1ifx>0∫0∞2du1+2xu2=2xu=α∫0∞21+α2dα2x=2x.π2ifx<0∫0∞2du1+2xu2=∫0∞2du1−(−2xu)2=∫0∞2du(1−2xu)(1+2xu)=∫0∞{11−2xu+11+2xu}du=[ln∣1+2xu1−2xu∣]0+∞=0so∫0π2dθx+cos2θ=π22xifx>0∫0π2dθx+cos2θ=0ifx<0 Commented by prof Abdo imad last updated on 24/Jul/18 letw(x)=∫0π2dθx+cos2θ⇒w′(x)=−∫0π2dθ(x+cos2θ)2⇒∫0π2dθ(x+cos2θ)2=−w′(x)soifx>0w(x)=π22x⇒w′(x)=π2(−12xx)=−π22xx⇒∫0π2dθ(x+cos2θ)2=π22xxandF(x)=π22x−xπ22xx=π22x−π22x=πx{22−122}=πx{242}=π22xifx<0w(x)=0⇒∫0π2dθ(x+cos2θ)2=0⇒F(x)=0because∫0π2dθx+cos2θ=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-0-1-ln-1-x-1-x-2-dx-Next Next post: Question-170463 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.