Question Number 59282 by Mr X pcx last updated on 07/May/19
![calculate f(x)=∫_0 ^∞ e^(−x[t]) sin([t])dt with x>0 2) calculate ∫_0 ^∞ e^(−3[t]) sin([t])dt .](https://www.tinkutara.com/question/Q59282.png)
Commented by maxmathsup by imad last updated on 08/May/19
![1) we have f(x) =Σ_(n=0) ^∞ ∫_n ^(n+1) e^(−nx) sin(n) dt =Σ_(n=0) ^∞ sin(n)e^(−nx) (n+1−n) =Σ_(n=0) ^∞ e^(−nx) sin(n) =Im( Σ_(n=0) ^∞ e^(−nx+in) ) but Σ_(n=0) ^∞ e^(−nx +in) =Σ_(n=0) ^∞ (e^(i−x) )^n =(1/(1−e^(i−x) )) =(1/(1−e^(−x) (cos(1)+isin(1))) =(1/(1−e^(−x) cos(1)−i e^(−x) sin(1))) =((1−e^(−x) cos(1)+ie^(−x) sin(1))/((1−e^(−x) cos(1))^2 +e^(−2x) sin^2 (1))) ⇒ f(x) =((e^(−x) sin(1))/((1−e^(−x) cos(1))^2 +e^(−2x) sin^2 (1))) =((e^(−x) sin(1))/(1−2 e^(−x) cos(1) +e^(−2x) )) 2) ∫_0 ^∞ e^(−3[t]) sin([t])dt =f(3) =((e^(−3) sin(1))/(e^(−6) −2e^(−3) cos(1)+1)) =((e^3 sin(1))/(1−2e^3 cos(1) +e^6 )) .](https://www.tinkutara.com/question/Q59320.png)
Answered by tanmay last updated on 07/May/19
![f(x)=∫_0 ^1 e^(−x×0) sin(0)dt+∫_1 ^2 e^(−x×1) sin(1)dt+ ∫_2 ^3 e^(−x×2) sin(2)dt +...+∫_r ^(r+1) e^(−x×r) sin(r)dt+... =0+e^(−x) sin1+e^(−2x) sin2+e^(−3x) sin3+... =Σ_(r=0) ^∞ e^(−rx) ×sinr Q=e^(−x) sin1+e^(−2x) sin2+e^(−3x) sin3+... P=e^(−x) cos1+e^(−2x) cos2+e^(−3x) cos3+... P+iQ=e^(−x) ×e^i +e^(−2x) ×e^(i2) +e^(−3x) ×e^(i3) +... S=t+t^2 +t^3 +...∞ [t=(e^i /e^x )] S=(t/(1−t))=(e^i /(e^x (1−(e^i /e^x ))))=((cos1+isin1)/(e^x −cos1−isin1)) S=(((cos1+isin1))/((e^x −cos1)^2 +sin^2 1))×(e^x −cos1+isin1) S=((cos1(e^x −cos1)+isin1cos1+isin1(e^x −cos1)−sin^2 1)/(e^(2x) −2e^x cos1+1)) =((e^x cos1−1+i(sin1cos1+e^x sin1−sin1cos1))/(e^(2x) −2e^x cos1+1)) so reauired ans is Q =(complex part) =((e^x sin1)/(e^(2x) −2e^x cos1+1)) pls check ... 2)((e^3 sin1)/(e^6 −2e^3 cos1+1))](https://www.tinkutara.com/question/Q59292.png)
Commented by maxmathsup by imad last updated on 08/May/19

Commented by tanmay last updated on 08/May/19
