Menu Close

calculate-f-x-0-e-x-t-sin-t-dt-with-x-gt-0-2-calculate-0-e-3-t-sin-t-dt-




Question Number 59282 by Mr X pcx last updated on 07/May/19
calculate f(x)=∫_0 ^∞   e^(−x[t]) sin([t])dt  with x>0  2) calculate ∫_0 ^∞   e^(−3[t]) sin([t])dt .
calculatef(x)=0ex[t]sin([t])dtwithx>02)calculate0e3[t]sin([t])dt.
Commented by maxmathsup by imad last updated on 08/May/19
1) we have f(x) =Σ_(n=0) ^∞  ∫_n ^(n+1)  e^(−nx)  sin(n) dt =Σ_(n=0) ^∞   sin(n)e^(−nx) (n+1−n)  =Σ_(n=0) ^∞   e^(−nx)  sin(n) =Im( Σ_(n=0) ^∞  e^(−nx+in) )  but  Σ_(n=0) ^∞   e^(−nx +in)  =Σ_(n=0) ^∞   (e^(i−x) )^n   =(1/(1−e^(i−x) )) =(1/(1−e^(−x) (cos(1)+isin(1)))  =(1/(1−e^(−x) cos(1)−i e^(−x) sin(1))) =((1−e^(−x) cos(1)+ie^(−x) sin(1))/((1−e^(−x) cos(1))^2  +e^(−2x) sin^2 (1))) ⇒  f(x) =((e^(−x) sin(1))/((1−e^(−x) cos(1))^2  +e^(−2x) sin^2 (1))) =((e^(−x) sin(1))/(1−2 e^(−x) cos(1) +e^(−2x) ))  2) ∫_0 ^∞    e^(−3[t]) sin([t])dt =f(3) =((e^(−3) sin(1))/(e^(−6)  −2e^(−3) cos(1)+1)) =((e^3 sin(1))/(1−2e^3 cos(1) +e^6 )) .
1)wehavef(x)=n=0nn+1enxsin(n)dt=n=0sin(n)enx(n+1n)=n=0enxsin(n)=Im(n=0enx+in)butn=0enx+in=n=0(eix)n=11eix=11ex(cos(1)+isin(1)=11excos(1)iexsin(1)=1excos(1)+iexsin(1)(1excos(1))2+e2xsin2(1)f(x)=exsin(1)(1excos(1))2+e2xsin2(1)=exsin(1)12excos(1)+e2x2)0e3[t]sin([t])dt=f(3)=e3sin(1)e62e3cos(1)+1=e3sin(1)12e3cos(1)+e6.
Answered by tanmay last updated on 07/May/19
f(x)=∫_0 ^1 e^(−x×0) sin(0)dt+∫_1 ^2 e^(−x×1) sin(1)dt+  ∫_2 ^3 e^(−x×2) sin(2)dt +...+∫_r ^(r+1) e^(−x×r) sin(r)dt+...  =0+e^(−x) sin1+e^(−2x) sin2+e^(−3x) sin3+...  =Σ_(r=0) ^∞ e^(−rx) ×sinr    Q=e^(−x) sin1+e^(−2x) sin2+e^(−3x) sin3+...  P=e^(−x) cos1+e^(−2x) cos2+e^(−3x) cos3+...  P+iQ=e^(−x) ×e^i +e^(−2x) ×e^(i2) +e^(−3x) ×e^(i3) +...  S=t+t^2 +t^3 +...∞    [t=(e^i /e^x )]  S=(t/(1−t))=(e^i /(e^x (1−(e^i /e^x ))))=((cos1+isin1)/(e^x −cos1−isin1))  S=(((cos1+isin1))/((e^x −cos1)^2 +sin^2 1))×(e^x −cos1+isin1)  S=((cos1(e^x −cos1)+isin1cos1+isin1(e^x −cos1)−sin^2 1)/(e^(2x) −2e^x cos1+1))  =((e^x cos1−1+i(sin1cos1+e^x sin1−sin1cos1))/(e^(2x) −2e^x cos1+1))  so reauired ans is Q =(complex part)  =((e^x sin1)/(e^(2x) −2e^x cos1+1))  pls check ...  2)((e^3 sin1)/(e^6 −2e^3 cos1+1))
f(x)=01ex×0sin(0)dt+12ex×1sin(1)dt+23ex×2sin(2)dt++rr+1ex×rsin(r)dt+=0+exsin1+e2xsin2+e3xsin3+=r=0erx×sinrQ=exsin1+e2xsin2+e3xsin3+P=excos1+e2xcos2+e3xcos3+P+iQ=ex×ei+e2x×ei2+e3x×ei3+S=t+t2+t3+[t=eiex]S=t1t=eiex(1eiex)=cos1+isin1excos1isin1S=(cos1+isin1)(excos1)2+sin21×(excos1+isin1)S=cos1(excos1)+isin1cos1+isin1(excos1)sin21e2x2excos1+1=excos11+i(sin1cos1+exsin1sin1cos1)e2x2excos1+1soreauiredansisQ=(complexpart)=exsin1e2x2excos1+1plscheck2)e3sin1e62e3cos1+1
Commented by maxmathsup by imad last updated on 08/May/19
sir Tanmay your answer is correct thanks...
sirTanmayyouransweriscorrectthanks
Commented by tanmay last updated on 08/May/19
most welcome sir
mostwelcomesir

Leave a Reply

Your email address will not be published. Required fields are marked *