Menu Close

calculate-f-x-1-4-1-cos-x-2-1-9-1-cos-x-2-x-2k-pi-k-Z-f-min-Adapted-From-Instagram-




Question Number 162721 by mnjuly1970 last updated on 31/Dec/21
         calculate         f (x )= (( 1)/(4(1+cos ((x/2))) )) +(1/(9(1−cos ((x/2)))))  ( x ≠ 2k π , k ∈ Z)             f_( min) = ?                               Adapted From Instagram
calculatef(x)=14(1+cos(x2))+19(1cos(x2))(x2kπ,kZ)fmin=?AdaptedFromInstagram
Answered by Ar Brandon last updated on 31/Dec/21
f(x)=(1/(4(1+cos(x/2))))+(1/(9(1−cos(x/2))))            =(1/(8cos^2 (x/4)))+(1/(18sin^2 (x/4)))=((8+10sin^2 (x/4))/(36sin^2 (x/2)))  g(x)=36sin^2 (x/2)⇒g′(x)=18sinx=0⇒x=π  f(x) min ⇒ g(x) max ⇒x=π  f_(min) =((8+10sin^2 (π/4))/(36sin^2 (π/2)))=((8+5)/(36))=((13)/(36))
f(x)=14(1+cosx2)+19(1cosx2)=18cos2x4+118sin2x4=8+10sin2x436sin2x2g(x)=36sin2x2g(x)=18sinx=0x=πf(x)ming(x)maxx=πfmin=8+10sin2π436sin2π2=8+536=1336
Answered by mr W last updated on 31/Dec/21
f(x)=(1/(4×2 cos^2  (x/4)))+(1/(9×2 sin^2  (x/4)))  f(x)=(1/8)((1/(1−sin^2  (x/4)))+(4/(9 sin^2  (x/4))))  f(t)=(1/8)((1/(1−t))+(4/(9t))) with t=sin^2  (x/4) ∈(0,1)  f′(t)=0 ⇒(1/((1−t)^2 ))−(4/(9t^2 ))=0  5t^2 +8t−4=0  (5t−2)(t+2)=0  ⇒t=(2/5), −2 (rejected )  f_(min) =(1/8)((1/(1−(2/5)))+(4/(9×(2/5))))=((25)/(72)) ✓
f(x)=14×2cos2x4+19×2sin2x4f(x)=18(11sin2x4+49sin2x4)f(t)=18(11t+49t)witht=sin2x4(0,1)f(t)=01(1t)249t2=05t2+8t4=0(5t2)(t+2)=0t=25,2(rejected)fmin=18(1125+49×25)=2572
Commented by mnjuly1970 last updated on 31/Dec/21
    bravo sir  W  nice solution     as  always...grateful...
bravosirWnicesolutionasalwaysgrateful
Answered by mnjuly1970 last updated on 31/Dec/21
    f(x)= (1/8) +(1/8) tan^( 2) ((x/4))+(1/(18)) +(1/(18)) cot^( 2) ((x/4))             ≥((13)/(72)) + 2 (√((1/8) .(1/(18)))) =((13)/(72)) +(1/6)         f_( min)  = ((25)/(72))
f(x)=18+18tan2(x4)+118+118cot2(x4)1372+218.118=1372+16fmin=2572

Leave a Reply

Your email address will not be published. Required fields are marked *