Question Number 36173 by prof Abdo imad last updated on 30/May/18
$${calculate}\:\frac{\partial{f}}{\partial{x}}\:{and}\:\frac{\partial{f}}{\partial{y}}\:{in}\:{this}\:{cases} \\ $$$$\left.\mathrm{1}\right)\:{f}\left({x},{y}\right)=\:{e}^{−{x}} \:{sin}\left(\mathrm{2}{y}\:+\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){f}\left({x},{y}\right)\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){e}^{−{xy}} \\ $$$$\left.\mathrm{3}\right){f}\left({x},{y}\right)\:=\:\frac{{x}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} } \\ $$
Commented by maxmathsup by imad last updated on 13/Apr/19
$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left({x},{y}\right)\:={e}^{−{x}} {sin}\left(\mathrm{2}{y}+\mathrm{1}\right)\:\Rightarrow\frac{\partial{f}}{\partial{x}}\left({x},{y}\right)\:=−{e}^{−{x}} {sin}\left(\mathrm{2}{y}+\mathrm{1}\right)\:{and} \\ $$$$\frac{\partial{f}}{\partial{y}}\left({x},{y}\right)\:=\mathrm{2}\:{e}^{−{x}} {cos}\left(\mathrm{2}{y}+\mathrm{1}\right) \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:{f}\left({x},{y}\right)\:=\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){e}^{−{xy}} \:\Rightarrow\frac{\partial{f}}{\partial{x}}\left({x},{y}\right)\:=\mathrm{2}{x}\:{e}^{−{xy}} \:−{y}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){e}^{−{xy}} \\ $$$$=\left(\mathrm{2}{x}−{yx}^{\mathrm{2}} \:−{y}^{\mathrm{3}} \right){e}^{−{xy}} \:\:\:{and} \\ $$$$\frac{\partial{f}}{\partial{y}}\left({x},{y}\right)\:=\:\mathrm{2}{y}\:{e}^{−{xy}} \:−{x}\:\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right){e}^{−{xy}} \:=\left(\mathrm{2}{y}−{x}^{\mathrm{3}} \:−{xy}^{\mathrm{2}} \right){e}^{−{xy}} \\ $$$$\left.\mathrm{3}\right)\:{we}\:{have}\:{f}\left({x},{y}\right)\:=\frac{{x}}{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }\:\Rightarrow\frac{\partial{f}}{\partial{x}}\left({x},{y}\right)\:=\frac{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} −{x}\left(\mathrm{2}{x}\right)}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{{y}^{\mathrm{2}} −{x}^{\mathrm{2}} }{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} } \\ $$$${and}\:\frac{\partial{f}}{\partial{y}}\left({x},{y}\right)\:={x}\frac{−\mathrm{2}{y}}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:=\frac{−\mathrm{2}{xy}}{\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)^{\mathrm{2}} }\:. \\ $$