Menu Close

calculate-f-x-y-0-e-xt-ln-yt-dt-with-x-gt-0-and-y-gt-0-




Question Number 62415 by mathmax by abdo last updated on 20/Jun/19
calculate f(x,y) =∫_0 ^∞  e^(−xt) ln(yt) dt  with x>0 and y>0 .
calculatef(x,y)=0extln(yt)dtwithx>0andy>0.
Commented by mathmax by abdo last updated on 23/Jun/19
we have f(x,y) =∫_0 ^∞  e^(−xt)  (lny +ln(t)dt =ln(y)∫_0 ^∞  e^(−xt)  dt +∫_0 ^∞  e^(−xt) ln(t)dt  ∫_0 ^∞  e^(−xt)  dt =[−(1/x)e^(−xt) ]_(t=0) ^∞  =(1/x)  ∫_0 ^∞  e^(−xt) ln(t) dt =_(xt =u)   ∫_0 ^∞  e^(−u) ln((u/x))(du/x)  =(1/x){ ∫_0 ^∞  e^(−u)  ln(u)du−ln(x)∫_0 ^∞  e^(−u)  du}  =(1/x){ −γ −ln(x)×1} =−(1/x){ln(x)+γ) ⇒  f(x,y) =((ln(y))/x) −(1/x){ln(x)+γ} =(1/x)( ln((y/x))−γ)  γ is euler constant number.
wehavef(x,y)=0ext(lny+ln(t)dt=ln(y)0extdt+0extln(t)dt0extdt=[1xext]t=0=1x0extln(t)dt=xt=u0euln(ux)dux=1x{0euln(u)duln(x)0eudu}=1x{γln(x)×1}=1x{ln(x)+γ)f(x,y)=ln(y)x1x{ln(x)+γ}=1x(ln(yx)γ)γiseulerconstantnumber.

Leave a Reply

Your email address will not be published. Required fields are marked *