Question Number 169797 by mathocean1 last updated on 09/May/22
$${Calculate}\:{for}\:{n}\in\:\mathbb{N}^{\ast} :\int_{\mathrm{0}} ^{+\infty} \frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} } \\ $$$$\left({Notice}:\:\mathrm{1}=\left(\mathrm{1}+{t}^{\mathrm{2}} \right)−{t}^{\mathrm{2}} \right) \\ $$
Answered by floor(10²Eta[1]) last updated on 09/May/22
$$\mathrm{t}=\mathrm{tg}\theta\Rightarrow\mathrm{dt}=\mathrm{sec}^{\mathrm{2}} \theta\mathrm{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{sec}^{\mathrm{2}} \mathrm{d}\theta}{\mathrm{sec}^{\mathrm{2n}} \theta}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \mathrm{cos}^{\mathrm{2n}−\mathrm{2}} \theta\mathrm{d}\theta,\:\mathrm{use}\:\mathrm{reduction}\:\mathrm{formula}. \\ $$
Answered by Mathspace last updated on 09/May/22
$${u}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\:\Rightarrow \\ $$$${we}\:{have}\:{B}\left({x},{y}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{x}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{{x}+{y}} }{dt} \\ $$$${so}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{n}} }=_{{t}=\sqrt{{x}}} \:\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} }{\left(\mathrm{1}+{x}\right)^{{n}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{{n}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} }{\left(\mathrm{1}+{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}+{n}−\frac{\mathrm{1}}{\mathrm{2}}} }{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{B}\left(\frac{\mathrm{1}}{\mathrm{2}},{n}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}×\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right).\Gamma\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left({n}\right)} \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}\left({n}−\mathrm{1}\right)!}\Gamma\left({n}−\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}}×\frac{\left({n}−\frac{\mathrm{3}}{\mathrm{2}}\right)!}{\left({n}−\mathrm{1}\right)!}\:\:\left({n}>\mathrm{0}\right) \\ $$
Answered by Mathspace last updated on 09/May/22
$${residus}\:{method} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }=\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{+\infty} \frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} } \\ $$$$\varphi\left({z}\right)=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{{n}} }\Rightarrow\varphi\left({z}\right)=\frac{\mathrm{1}}{\left({z}−{i}\right)^{{n}} \left({z}+{i}\right)^{{n}} } \\ $$$$\int_{{R}} \varphi{dz}=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)={lim}_{{z}\rightarrow{i}} \frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{{n}} \varphi\left({z}\right)\right\}^{\left({n}−\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \frac{\mathrm{1}}{\left({n}−\mathrm{1}\right)!}\left\{\left({z}+{i}\right)^{−{n}} \right\}^{\left({n}−\mathrm{1}\right)} \\ $$$$\left.{we}\:{have}\:\left({z}+{i}\right)^{{p}} \right\}^{\left(\mathrm{1}\right)} ={p}\left({z}+{i}\right)^{{p}−\mathrm{1}} \\ $$$$\left….\left({z}+{i}\right)^{{p}} \right\}^{\left({k}\right)} ={p}\left({p}−\mathrm{1}\right)…\left({p}−{k}+\mathrm{1}\right)\left({z}+{i}\right)^{{p}−{k}} \\ $$$$\left.\left({z}+{i}\right)^{−{n}} \right\}^{\left({n}−\mathrm{1}\right)} =\left(−{n}\right)\left(−{n}−\mathrm{1}\right)…\left(−{n}−{n}+\mathrm{1}+\mathrm{1}\right)\left({z}+{i}\right)^{−{n}−{n}+\mathrm{1}} \\ $$$$=\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {n}\left({n}+\mathrm{1}\right)….\left(\mathrm{2}{n}+\mathrm{2}\right)\left({z}+{i}\right)^{−\mathrm{2}{n}+\mathrm{1}} \\ $$$$….. \\ $$