Menu Close

Calculate-for-n-N-0-dt-t-2-1-n-Notice-1-1-t-2-t-2-




Question Number 169797 by mathocean1 last updated on 09/May/22
Calculate for n∈ N^∗ :∫_0 ^(+∞) (dt/((t^2 +1)^n ))  (Notice: 1=(1+t^2 )−t^2 )
CalculatefornN:0+dt(t2+1)n(Notice:1=(1+t2)t2)
Answered by floor(10²Eta[1]) last updated on 09/May/22
t=tgθ⇒dt=sec^2 θdθ  ∫_0 ^(π/2) ((sec^2 dθ)/(sec^(2n) θ))=∫_0 ^(π/2) cos^(2n−2) θdθ, use reduction formula.
t=tgθdt=sec2θdθ0π/2sec2dθsec2nθ=0π/2cos2n2θdθ,usereductionformula.
Answered by Mathspace last updated on 09/May/22
u_n =∫_0 ^∞  (dt/((t^2 +1)^n )) ⇒  we have B(x,y)=∫_0 ^∞  (t^(x−1) /((1+t)^(x+y) ))dt  so∫_0 ^∞   (dt/((1+t^2 )^n ))=_(t=(√x))   (1/2)∫_0 ^∞  (x^(−(1/2)) /((1+x)^n ))dx  =(1/2)∫_0 ^∞   (t^((1/2)−1) /((1+t)^(n+(1/2)−(1/2)) ))dt  =(1/2)∫_0 ^∞   (t^((1/2)−1) /((1+t)^((1/2)+n−(1/2)) ))dt  =(1/2)B((1/2),n−(1/2))  =(1/2)×((Γ((1/2)).Γ(n−(1/2)))/(Γ(n)))  =((√π)/(2(n−1)!))Γ(n−(1/2))  =((√π)/2)×(((n−(3/2))!)/((n−1)!))  (n>0)
un=0dt(t2+1)nwehaveB(x,y)=0tx1(1+t)x+ydtso0dt(1+t2)n=t=x120x12(1+x)ndx=120t121(1+t)n+1212dt=120t121(1+t)12+n12dt=12B(12,n12)=12×Γ(12).Γ(n12)Γ(n)=π2(n1)!Γ(n12)=π2×(n32)!(n1)!(n>0)
Answered by Mathspace last updated on 09/May/22
residus method  ∫_0 ^∞   (dt/((t^2 +1)^n ))=(1/2)∫_(−∞) ^(+∞) (dt/((t^2 +1)^n ))  ϕ(z)=(1/((z^2 +1)^n ))⇒ϕ(z)=(1/((z−i)^n (z+i)^n ))  ∫_R ϕdz=2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i) (1/((n−1)!)){(z−i)^n ϕ(z)}^((n−1))   =lim_(z→i) (1/((n−1)!)){(z+i)^(−n) }^((n−1))   we have (z+i)^p }^((1)) =p(z+i)^(p−1)   ...(z+i)^p }^((k)) =p(p−1)...(p−k+1)(z+i)^(p−k)   (z+i)^(−n) }^((n−1)) =(−n)(−n−1)...(−n−n+1+1)(z+i)^(−n−n+1)   =(−1)^(n−1) n(n+1)....(2n+2)(z+i)^(−2n+1)   .....
residusmethod0dt(t2+1)n=12+dt(t2+1)nφ(z)=1(z2+1)nφ(z)=1(zi)n(z+i)nRφdz=2iπRes(φ,i)Res(φ,i)=limzi1(n1)!{(zi)nφ(z)}(n1)=limzi1(n1)!{(z+i)n}(n1)wehave(z+i)p}(1)=p(z+i)p1Missing or unrecognized delimiter for \left(z+i)n}(n1)=(n)(n1)(nn+1+1)(z+i)nn+1=(1)n1n(n+1).(2n+2)(z+i)2n+1..

Leave a Reply

Your email address will not be published. Required fields are marked *