Menu Close

calculate-g-e-x-2-sin-sin-x-2-dx-




Question Number 37291 by math khazana by abdo last updated on 11/Jun/18
calculate g(θ) = ∫_(−∞) ^(+∞)  e^(−x^2 )  sin(sinθ x^2 )dx .
calculateg(θ)=+ex2sin(sinθx2)dx.
Commented by math khazana by abdo last updated on 16/Jun/18
let λ =sinθ ⇒g(θ)=∫_(−∞) ^(+∞)  e^(−x^2 ) sin(λx^2 )dx  =Im { ∫_(−∞) ^(+∞)  e^(−x^2  +iλx^2 ) dx}  but  ∫_(−∞) ^(+∞)   e^(−x^2  +iλx^2 ) dx = ∫_(−∞) ^(+∞)   e^(−(1−iλ)x^2 ) dx  =_((√(1−iλ)) x =t)   ∫_(−∞) ^(+∞)   e^(−t^2 )   (dt/( (√(1−iλ))))  = (1/( (√(1−iλ)))) (√π)    but  1−iλ =(√(1+λ^2 )) { (1/( (√(1+λ^2 )))) +i ((−λ)/( (√(1+λ^2 ))))}=r e^(iϕ)   ⇒  r =(√(1+λ^2   ))   and  cosϕ= (1/( (√(1+λ^2 ))))  and sinϕ=((−λ)/( (√(1+λ^2 ))))  ⇒ tanϕ =−λ ⇒ ϕ =−arctan(λ)  1−iλ =(√(1+λ^2 ))  e^(−iartan(λ))  ⇒  (√(1−iλ_  ))  = (1+λ^2 )^(1/4)   e^(−(i/2)arctan(λ))  ⇒  ∫_(−∞) ^(+∞)    e^(−x^2  +iλx^2 ) dx = (√π)(1+λ^2 )^(−(1/4))   e^((i/2) arctan(λ))   =(√π)(1+λ^2 )^(−(1/4)) { cos(((arctan(λ))/2)) +i sin(((arctan(λ))/2)}  g(θ) = (√π)(1+sin^2 θ)^(−(1/4))  sin( ((arctan(sinθ)/2)) .
letλ=sinθg(θ)=+ex2sin(λx2)dx=Im{+ex2+iλx2dx}but+ex2+iλx2dx=+e(1iλ)x2dx=1iλx=t+et2dt1iλ=11iλπbut1iλ=1+λ2{11+λ2+iλ1+λ2}=reiφr=1+λ2andcosφ=11+λ2andsinφ=λ1+λ2tanφ=λφ=arctan(λ)1iλ=1+λ2eiartan(λ)1iλ=(1+λ2)14ei2arctan(λ)+ex2+iλx2dx=π(1+λ2)14ei2arctan(λ)=π(1+λ2)14{cos(arctan(λ)2)+isin(arctan(λ)2}g(θ)=π(1+sin2θ)14sin(arctan(sinθ2).

Leave a Reply

Your email address will not be published. Required fields are marked *