Menu Close

calculate-h-a-cos-at-ch-t-2-dt-




Question Number 54374 by maxmathsup by imad last updated on 02/Feb/19
calculate h(a) =∫_(−∞) ^(+∞)   ((cos(at))/(ch((t/2))))dt .
calculateh(a)=+cos(at)ch(t2)dt.
Commented by Abdo msup. last updated on 08/Feb/19
h(a)=_((t/2)=x)    2 ∫_(−∞) ^(+∞)    ((cos(2ax))/(ch(x)))dx  =4 ∫_0 ^∞    ((cos(2ax))/((e^x  +e^(−x) )/2))dx =8 ∫_0 ^∞   ((e^(−x) cos(2ax))/(1+e^(−2x) ))dx  =8 ∫_0 ^∞   e^(−x) cos(2ax)(Σ_(n=0) ^∞ (−1)^n  e^(−2nx) )dx  =8 Σ_(n=0) ^∞  (−1)^n  ∫_0 ^∞   e^(−(2n+1)x)  cos(2ax)dx  let A_n =∫_0 ^∞  e^(−(2n+1)x) cos(2ax)dx ⇒  A_n =Re( ∫_0 ^∞   e^(−(2n+1)x) e^(2iax) dx) but  ∫_0 ^∞   e^((−(2n+1)+2ia)x) dx=[(1/(−(2n+1)+2ia)) e^((−(2n+1)+2ia)x) ]_0 ^(+∞)   = (1/(−(2n+1)+2ia)) =−(1/((2n+1)−2ia))  =−((2n+1 +2ia)/((2n+1)^2  +4a^2 )) ⇒ A_n =−((2n+1)/((2n+1)^2  +4a^2 )) ⇒  h(a)=8 Σ_(n=0) ^∞ (−1)^(n+1)  ((2n+1)/((2n+1)^2  +4a^2 ))  and this serie can be calculated by  fourier series  ...be continued...
h(a)=t2=x2+cos(2ax)ch(x)dx=40cos(2ax)ex+ex2dx=80excos(2ax)1+e2xdx=80excos(2ax)(n=0(1)ne2nx)dx=8n=0(1)n0e(2n+1)xcos(2ax)dxletAn=0e(2n+1)xcos(2ax)dxAn=Re(0e(2n+1)xe2iaxdx)but0e((2n+1)+2ia)xdx=[1(2n+1)+2iae((2n+1)+2ia)x]0+=1(2n+1)+2ia=1(2n+1)2ia=2n+1+2ia(2n+1)2+4a2An=2n+1(2n+1)2+4a2h(a)=8n=0(1)n+12n+1(2n+1)2+4a2andthisseriecanbecalculatedbyfourierseriesbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *