Menu Close

calculate-I-0-1-ln-1-t-2-4-t-2-dt-




Question Number 38463 by maxmathsup by imad last updated on 25/Jun/18
calculate  I = ∫_0 ^1   ((ln (1−(t^2 /4)))/t^2 )dt
calculateI=01ln(1t24)t2dt
Commented by abdo mathsup 649 cc last updated on 05/Jul/18
we have proved?that   ∫_0 ^1    ((ln(1−x^2 t^2 ))/t^2 )dt = −ln(1−x^2 ) −(x/2)ln(((1+x)/(1−x)))  with ∣x∣<1 ⇒  ∫_0 ^1   ((ln(1−(t^2 /4)))/t^2 )dt =−ln(1−((1/2))^2 )−(1/4)ln(((1+(1/2))/(1−(1/2))))  =−ln((3/4)) −(1/4)ln(3) =ln((4/3))−((ln(3))/4)   =2ln(2)−ln(3)−(1/4)ln(3)  =2ln(2)−(5/4)ln(3) .
wehaveproved?that01ln(1x2t2)t2dt=ln(1x2)x2ln(1+x1x)withx∣<101ln(1t24)t2dt=ln(1(12)2)14ln(1+12112)=ln(34)14ln(3)=ln(43)ln(3)4=2ln(2)ln(3)14ln(3)=2ln(2)54ln(3).

Leave a Reply

Your email address will not be published. Required fields are marked *