Menu Close

calculate-I-0-1-x-2-1-x-2-arctan-x-dx-




Question Number 42796 by maxmathsup by imad last updated on 02/Sep/18
calculate I = ∫_0 ^1   (x^2 /(1+x^2 )) arctan(x)dx
calculateI=01x21+x2arctan(x)dx
Commented by maxmathsup by imad last updated on 04/Sep/18
we have  I = ∫_0 ^1  ((1+x^2 −1)/(1+x^2 )) arctan(x)dx= ∫_0 ^1  arctanx −∫_0 ^1   ((arctanx)/(1+x^2 ))dx but  by parts ∫_0 ^1  arctanxdx =[x arctanx]_0 ^1  −∫_0 ^1  (x/(1+x^2 ))dx  =(π/4) −[(1/2)ln(1+x^2 )]_0 ^1  =(π/4) −((ln(2))/2) also by parts u^′  =(1/(1+x^2 )) and v=arctan(x)  ∫_0 ^1    ((arctan(x))/(1+x^2 )) dx =  [arctan^2 x]_0 ^1  −∫_0 ^1  ((arctanx)/(1+x^2 )) dx ⇒  2 ∫_0 ^1   ((arctan(x))/(1+x^2 ))dx =(π^2 /(16)) ⇒∫_0 ^1   ((arctan(x))/(1+x^2 ))dx =(π^2 /(32)) ⇒  I  =(π/4) −((ln(2))/2) −(π^2 /(32)) .
wehaveI=011+x211+x2arctan(x)dx=01arctanx01arctanx1+x2dxbutbyparts01arctanxdx=[xarctanx]0101x1+x2dx=π4[12ln(1+x2)]01=π4ln(2)2alsobypartsu=11+x2andv=arctan(x)01arctan(x)1+x2dx=[arctan2x]0101arctanx1+x2dx201arctan(x)1+x2dx=π21601arctan(x)1+x2dx=π232I=π4ln(2)2π232.
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18
t=tan^(−1) x   dt=(dx/(1+x^2 ))  ∫_0 ^(Π/4) ((tan^2 t×t)/)dt  ∫_0 ^(Π/4) (sec^2 t−1)t dt  ∫_0 ^(Π/4) tsec^2 tdt−∫_0 ^(Π/4) tdt  ∣ttant−lnsect−(t^2 /2)∣_0 ^(Π/4)   (Π/4)−(1/2)ln2−(Π^2 /(32))
t=tan1xdt=dx1+x20Π4tan2t×tdt0Π4(sec2t1)tdt0Π4tsec2tdt0Π4tdtttantlnsectt220Π4Π412ln2232

Leave a Reply

Your email address will not be published. Required fields are marked *