calculate-I-0-1-x-2-1-x-2-arctan-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42796 by maxmathsup by imad last updated on 02/Sep/18 calculateI=∫01x21+x2arctan(x)dx Commented by maxmathsup by imad last updated on 04/Sep/18 wehaveI=∫011+x2−11+x2arctan(x)dx=∫01arctanx−∫01arctanx1+x2dxbutbyparts∫01arctanxdx=[xarctanx]01−∫01x1+x2dx=π4−[12ln(1+x2)]01=π4−ln(2)2alsobypartsu′=11+x2andv=arctan(x)∫01arctan(x)1+x2dx=[arctan2x]01−∫01arctanx1+x2dx⇒2∫01arctan(x)1+x2dx=π216⇒∫01arctan(x)1+x2dx=π232⇒I=π4−ln(2)2−π232. Answered by tanmay.chaudhury50@gmail.com last updated on 03/Sep/18 t=tan−1xdt=dx1+x2∫0Π4tan2t×tdt∫0Π4(sec2t−1)tdt∫0Π4tsec2tdt−∫0Π4tdt∣ttant−lnsect−t22∣0Π4Π4−12ln2−∏232 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-x-4-2x-3-2x-1-x-3-2x-2-2x-Next Next post: 1-n-1-n-2-n-3-n-4-N- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.