calculate-I-0-2pi-cos-2x-cosx-sinx-dx-and-J-0-2pi-sin-2x-cosx-sinx-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42500 by maxmathsup by imad last updated on 26/Aug/18 calculateI=∫02πcos(2x)cosx+sinxdxandJ=∫02πsin(2x)cosx+sinxdx Commented by maxmathsup by imad last updated on 27/Aug/18 wehaveI=Re(∫02πei2xcosx+sinxdx)changementeix=zgive∫02πei2xcosx+sonxdx=∫∣z∣=1z2z+z−12+z−z−12idziz=∫∣z∣=12z2iz{z+z−1−i(z−z−1)}dz=∫∣z∣=12z2iz2+i+z2−1dz=∫∣z∣=12z2(1+i)z2+i−1dzletφ(z)=2z2(1+i)z2+i−1polesofφ?φ(z)=2z2(1+i)(z2−1−i1+i)=2z2(1+i)(z2−(1−i)22)=2z2(1+i)(z2+i)=2z2(1+i)(z−−i)(z+−i)=2z2(1+i)(z−e−iπ4)(z+e−iπ4)sothepolesofφare+−e−iπ4⇒∫∣z∣=1φ(z)dz=2iπ{Res(φ,e−iπ4)+Res(φ,−e−iπ4)}Res(φ,e−iπ4)=limz→e−iπ4(z−e−iπ4)φ(z)=2(−i)(1+i)2e−iπ4=−i1+ieiπ4=−i(1−i)2eiπ4=−1−i2eiπ4Res(φ,−e−iπ4)=limz→−e−iπ4(z+eiπ4)φ(z)=2(−i)(1+i)(−2e−iπ4)=i1+ieiπ4=i(1−i)2eiπ4=1+i2eiπ4⇒∫∣z∣=1φ(z)dz=2iπ{−1−i2eiπ4+1+i2eiπ4}=0⇒I=0andJ=0. Commented by maxmathsup by imad last updated on 27/Aug/18 anotherwaybutsoeasywehaveI=∫0πcos(2x)cosx+sinxdx+∫π2πcos(2x)cosx+sinxdxbut∫π2πcos(2x)cosx+sinxdx=x=π+t∫0πcos(2t)−cost−sintdt=−∫0πcos(2t)cost+sintdt⇒I=0thesamemethodgiveJ=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-108034Next Next post: calculate-I-0-2pi-cos-4x-cosx-sinx-and-J-0-2pi-sin-4x-cosx-sinx-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.