Menu Close

calculate-I-0-2pi-cos-2x-cosx-sinx-dx-and-J-0-2pi-sin-2x-cosx-sinx-dx-




Question Number 42500 by maxmathsup by imad last updated on 26/Aug/18
calculate   I = ∫_0 ^(2π)    ((cos(2x))/(cosx +sinx))dx and J =∫_0 ^(2π)   ((sin(2x))/(cosx +sinx))dx
calculateI=02πcos(2x)cosx+sinxdxandJ=02πsin(2x)cosx+sinxdx
Commented by maxmathsup by imad last updated on 27/Aug/18
we have I = Re( ∫_0 ^(2π)    (e^(i2x) /(cosx +sinx))dx)  changement  e^(ix)  =z give  ∫_0 ^(2π)    (e^(i2x) /(cosx +sonx))dx = ∫_(∣z∣=1)  (z^2 /(((z+z^(−1) )/2) +((z−z^(−1) )/(2i)))) (dz/(iz))  = ∫_(∣z∣=1)      ((2z^2 )/(iz{ z+z^(−1)  −i(z−z^(−1) )}))dz =∫_(∣z∣=1)       ((2z^2 )/(iz^2  +i +z^2 −1))dz  =∫_(∣z∣=1)     ((2z^2 )/((1+i)z^2  +i−1))dz  let ϕ(z) =((2z^2 )/((1+i)z^2  +i−1)) poles of ϕ?  ϕ(z) =((2z^2 )/((1+i)(z^2  −((1−i)/(1+i))))) =((2z^2 )/((1+i)(z^2  −(((1−i)^2 )/2)))) =((2z^2 )/((1+i)(z^2  +i)))  =((2z^2 )/((1+i)(z−(√(−i)))(z+(√(−i))))) =((2z^2 )/((1+i)(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) ))) so the poles of ϕ are  +^−  e^(−((iπ)/4))  ⇒ ∫_(∣z∣=1)    ϕ(z)dz =2iπ{ Res(ϕ,e^(−((iπ)/4)) ) +Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^(−((iπ)/4)) ) =lim_(z→e^(−((iπ)/4)) )     (z−e^(−((iπ)/4)) )ϕ(z) = ((2 (−i))/((1+i)2e^(−((iπ)/4)) )) =((−i)/(1+i)) e^((iπ)/4)   =((−i(1−i))/2) e^((iπ)/4)   =((−1−i)/2) e^((iπ)/4)   Res(ϕ,−e^(−((iπ)/4)) ) =lim_(z→−e^(−((iπ)/4)) )    (z+e^((iπ)/4) )ϕ(z) =((2(−i))/((1+i)(−2 e^(−((iπ)/4)) )))  =(i/(1+i)) e^((iπ)/4)   =((i(1−i))/2) e^((iπ)/4)   =((1+i)/2) e^((iπ)/4)  ⇒  ∫_(∣z∣ =1) ϕ(z)dz =2iπ{((−1−i)/2) e^((iπ)/4)   +((1+i)/2) e^((iπ)/4) } =0 ⇒ I =0 and J =0 .
wehaveI=Re(02πei2xcosx+sinxdx)changementeix=zgive02πei2xcosx+sonxdx=z∣=1z2z+z12+zz12idziz=z∣=12z2iz{z+z1i(zz1)}dz=z∣=12z2iz2+i+z21dz=z∣=12z2(1+i)z2+i1dzletφ(z)=2z2(1+i)z2+i1polesofφ?φ(z)=2z2(1+i)(z21i1+i)=2z2(1+i)(z2(1i)22)=2z2(1+i)(z2+i)=2z2(1+i)(zi)(z+i)=2z2(1+i)(zeiπ4)(z+eiπ4)sothepolesofφare+eiπ4z∣=1φ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=2(i)(1+i)2eiπ4=i1+ieiπ4=i(1i)2eiπ4=1i2eiπ4Res(φ,eiπ4)=limzeiπ4(z+eiπ4)φ(z)=2(i)(1+i)(2eiπ4)=i1+ieiπ4=i(1i)2eiπ4=1+i2eiπ4z=1φ(z)dz=2iπ{1i2eiπ4+1+i2eiπ4}=0I=0andJ=0.
Commented by maxmathsup by imad last updated on 27/Aug/18
another way but so easy  we have   I = ∫_0 ^π     ((cos(2x))/(cosx +sinx)) dx +∫_π ^(2π)    ((cos(2x))/(cosx +sinx)) dx but  ∫_π ^(2π)    ((cos(2x))/(cosx +sinx))dx =_(x =π +t)      ∫_0 ^π    ((cos(2t))/(−cost −sint)) dt =−∫_0 ^π    ((cos(2t))/(cost +sint))dt ⇒  I =0  the same method give J =0
anotherwaybutsoeasywehaveI=0πcos(2x)cosx+sinxdx+π2πcos(2x)cosx+sinxdxbutπ2πcos(2x)cosx+sinxdx=x=π+t0πcos(2t)costsintdt=0πcos(2t)cost+sintdtI=0thesamemethodgiveJ=0

Leave a Reply

Your email address will not be published. Required fields are marked *