Menu Close

calculate-I-0-2pi-cos-4x-cosx-sinx-and-J-0-2pi-sin-4x-cosx-sinx-dx-




Question Number 42501 by maxmathsup by imad last updated on 26/Aug/18
calculate I = ∫_0 ^(2π)    ((cos(4x))/(cosx +sinx))  and J = ∫_0 ^(2π)   ((sin(4x))/(cosx +sinx))dx
calculateI=02πcos(4x)cosx+sinxandJ=02πsin(4x)cosx+sinxdx
Commented by maxmathsup by imad last updated on 27/Aug/18
we have I = ∫_0 ^π   ((cos(4x))/(cosx +sinx)) dx + ∫_π ^(2π)    ((cos(4x))/(cosx +sinx)) but changement  x =π +t give  ∫_π ^(2π)   ((cos(4x))/(cosx +sinx))dx =∫_0 ^π    ((cos(4t))/(−cost −sint)) dt ⇒ I =0  the same method show that J =0
wehaveI=0πcos(4x)cosx+sinxdx+π2πcos(4x)cosx+sinxbutchangementx=π+tgiveπ2πcos(4x)cosx+sinxdx=0πcos(4t)costsintdtI=0thesamemethodshowthatJ=0

Leave a Reply

Your email address will not be published. Required fields are marked *