Question Number 36412 by abdo.msup.com last updated on 01/Jun/18
$${calculate}\:{I}_{\lambda} \:=\int_{\mathrm{0}} ^{\lambda} \:{e}^{−{x}} {ln}\left(\mathrm{1}+{e}^{{x}} \right){dx} \\ $$
Commented by abdo.msup.com last updated on 02/Jun/18
$${changement}\:\:{e}^{{x}} ={t}\:{give} \\ $$$${I}_{\lambda} \:=\:\int_{\mathrm{1}} ^{{e}^{\lambda} } \:\frac{{ln}\left(\mathrm{1}+{t}\right)}{{t}}\:\frac{{dt}}{{t}}\:\:=\:\int_{\mathrm{1}} ^{{e}^{\lambda} } \:\frac{\mathrm{1}}{{t}^{\mathrm{2}} }{ln}\left(\mathrm{1}+{t}\right){dt} \\ $$$${and}\:{by}\:{parts}\:{we}\:{get} \\ $$$${I}_{\lambda} \:=\:\left[−\frac{\mathrm{1}}{{t}}{ln}\left(\mathrm{1}+{t}\right)\right]_{\mathrm{1}} ^{{e}^{\lambda} } \:\:+\int_{\mathrm{1}} ^{{e}^{\lambda} } \:\:\frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}\right)}{dt} \\ $$$$={ln}\left(\mathrm{2}\right)\:−{e}^{−\lambda} {ln}\left(\mathrm{1}+{e}^{\lambda} \right) \\ $$$$+\:\int_{\mathrm{1}} ^{{e}^{\lambda} } \left\{\:\frac{\mathrm{1}}{{t}}\:−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right\}{dt} \\ $$$$=\left[{ln}\left(\frac{{t}}{{t}+\mathrm{1}}\right)\right]_{\mathrm{1}} ^{{e}^{\lambda} } \:=\:{ln}\left(\:\frac{{e}^{\lambda} }{{e}^{\lambda} \:+\mathrm{1}}\right)\:−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$=\lambda\:−{ln}\left(\mathrm{1}+{e}^{\lambda} \right)\:+{ln}\left(\mathrm{2}\right)\:\Rightarrow \\ $$$${I}_{\lambda} \:={ln}\left(\mathrm{2}\right)−{e}^{−\lambda} {ln}\left(\mathrm{1}+{e}^{\lambda} \right)\:+\lambda\:−{ln}\left(\mathrm{1}+{e}^{\lambda} \right) \\ $$$$+{ln}\left(\mathrm{2}\right) \\ $$$${I}_{\lambda} \:=\:\mathrm{2}{ln}\left(\mathrm{2}\right)\:+\lambda\:−\left(\mathrm{1}+{e}^{−\lambda} \right){ln}\left(\mathrm{1}+{e}^{\lambda} \right). \\ $$
Answered by sma3l2996 last updated on 02/Jun/18
$${u}={e}^{−{x}} \Rightarrow{du}=−{e}^{−{x}} {dx} \\ $$$${I}_{\lambda} =−\int_{\mathrm{1}} ^{{e}^{−\lambda} } {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{u}}\right){du} \\ $$$$=\int_{{e}^{−\lambda} } ^{\mathrm{1}} \left({ln}\left(\mathrm{1}+{u}\right)−{ln}\left({u}\right)\right){du} \\ $$$$\int{ln}\left({u}\right){du}={ulnu}−\int\frac{{u}}{{u}}{du}+{k}={ulnu}−{u}+{K} \\ $$$$\int{ln}\left(\mathrm{1}+{u}\right){du}=\left({u}+\mathrm{1}\right){ln}\left(\mathrm{1}+{u}\right)−\int\frac{{u}+\mathrm{1}}{\mathrm{1}+{u}}+{c} \\ $$$$=\left({u}+\mathrm{1}\right){ln}\left(\mathrm{1}+{u}\right)−{u}+{C} \\ $$$${So}\:\:\:{I}_{\lambda} =\int_{{e}^{−\lambda} } ^{\mathrm{1}} \left({ln}\left({u}+\mathrm{1}\right)−{ln}\left({u}\right)\right){du} \\ $$$$=\left[\left({u}+\mathrm{1}\right){ln}\left({u}+\mathrm{1}\right)−{uln}\left({u}\right)\right]_{{e}^{−\lambda} } ^{\mathrm{1}} \\ $$$$=\left({e}^{−\lambda} +\mathrm{1}\right){ln}\left({e}^{−\lambda} +\mathrm{1}\right)+\lambda{e}^{−\lambda} −\mathrm{2}{ln}\mathrm{2} \\ $$$$=\left({e}^{−\lambda} +\mathrm{1}\right){ln}\left({e}^{\lambda} +\mathrm{1}\right)−\lambda−\mathrm{2}{ln}\mathrm{2} \\ $$