Menu Close

calculate-I-0-pi-2-dx-1-cosx-and-J-0-pi-2-cosx-1-cosx-dx-




Question Number 27757 by abdo imad last updated on 14/Jan/18
calculate  I= ∫_0 ^(π/2)    (dx/(1+cosx)) and J= ∫_0^  ^(π/2)   ((cosx)/(1+cosx))dx .
calculateI=0π2dx1+cosxandJ=0π2cosx1+cosxdx.
Answered by mrW2 last updated on 14/Jan/18
∫(dx/(1+cos x))=∫(1/(cos^2  (x/2))) d((x/2))=tan (x/2)+C  ∫((cos x dx)/(1+cos x))=∫((1+cos x−1)/(1+cos x)) dx=x−∫(dx/(1+cos x))=x−tan (x/2)+C  ⇒I=[tan (x/2)]_0 ^(π/2) =tan (π/4)=1  ⇒J=[x−tan (x/2)]_0 ^(π/2) =(π/2)−tan (π/4)=(π/2)−1
dx1+cosx=1cos2x2d(x2)=tanx2+Ccosxdx1+cosx=1+cosx11+cosxdx=xdx1+cosx=xtanx2+CI=[tanx2]0π2=tanπ4=1J=[xtanx2]0π2=π2tanπ4=π21

Leave a Reply

Your email address will not be published. Required fields are marked *