Menu Close

calculate-I-0-pi-2-x-3-x-cos-2-xdx-and-J-0-pi-2-x-3-x-sin-2-xdx-cslculate-I-and-J-




Question Number 36415 by abdo.msup.com last updated on 01/Jun/18
calculate I = ∫_0 ^(π/2) (x^3  +x)cos^2 xdx and  J = ∫_0 ^(π/2)   (x^3  +x)sin^2 xdx  cslculate I and J .
calculateI=0π2(x3+x)cos2xdxandJ=0π2(x3+x)sin2xdxcslculateIandJ.
Commented by abdo.msup.com last updated on 04/Jun/18
we have I  +J = ∫_0 ^(π/2)  (x^3  +x)dx  =[(x^4 /4) +(x^2 /2)]_0 ^(π/2)  = (π^4 /(4.2^4 )) +(π^2 /(2.2^2 )) =(π^4 /(64)) +(π^2 /8)  also we have I −J = ∫_0 ^(π/2)  (x^3  +x)cos(2x)dx  =_(2x=t)   ∫_0 ^π  { ((t/2))^3  +(t/2)}cos(t) (dt/2)  =(1/2) ∫_0 ^π   { (t^3 /8) +(t/2)}cos(t)dt  = (1/(16)) ∫_0 ^π  { t^3  +4t)cos(2t)dt  by parts  ∫_0 ^π  { t^3  +4t)cos(2t)=[(1/2)(t^3  +4t)sin(2t)]_0 ^π   −(1/2)∫_0 ^π  {3t^2  +4}sin(2t)dt  =−(1/2){ [ −(1/2)(3t^2  +4)cos(2t)]_0 ^π   −∫_0 ^π −(1/2)(6t) cos(2t)dt  =(1/4){( 3π^2 +4)−4} −(3/2)∫_0 ^π  t cos(2t)dt  =(3/4)π^2   −(3/2){  [(1/2)t sin(2t)]_0 ^π  −∫_0 ^π  (1/2)sin(2t)dt}  =((3π^2 )/4)  +(3/4) ∫_0 ^π  sin(2t)dt  =((3π^2 )/4)  −(3/8)[cos(2t)]_0 ^π  = ((3π^2 )/4) so  I +J = (π^4 /(64)) +(π^2 /8)  and I −J = ((3π^2 )/4) ⇒  2I = (π^4 /(64)) + ((7π^2 )/8) ⇒ I = (π^4 /(128)) +((7π^2 )/(16))  and  2J =(π^4 /(64)) +(π^2 /8) −((3π^2 )/4) =(π^4 /(64)) −((5π^2 )/8) ⇒  J = (π^4 /(128)) −((5π^2 )/(16)) .
wehaveI+J=0π2(x3+x)dx=[x44+x22]0π2=π44.24+π22.22=π464+π28alsowehaveIJ=0π2(x3+x)cos(2x)dx=2x=t0π{(t2)3+t2}cos(t)dt2=120π{t38+t2}cos(t)dt=1160π{t3+4t)cos(2t)dtbyparts0π{t3+4t)cos(2t)=[12(t3+4t)sin(2t)]0π120π{3t2+4}sin(2t)dt=12{[12(3t2+4)cos(2t)]0π0π12(6t)cos(2t)dt=14{(3π2+4)4}320πtcos(2t)dt=34π232{[12tsin(2t)]0π0π12sin(2t)dt}=3π24+340πsin(2t)dt=3π2438[cos(2t)]0π=3π24soI+J=π464+π28andIJ=3π242I=π464+7π28I=π4128+7π216and2J=π464+π283π24=π4645π28J=π41285π216.

Leave a Reply

Your email address will not be published. Required fields are marked *