calculate-I-0-pi-4-arctanx-1-x-and-J-0-pi-4-arctanx-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 44002 by maxmathsup by imad last updated on 19/Sep/18 calculateI=∫0π4arctanx1+xandJ=∫0π4arctanx1−xdx Commented by maxmathsup by imad last updated on 24/Sep/18 letf(α)=∫0π4arctan(αx)1+xdx⇒I=f(1)wehavef′(α)=∫0π4xdx(1+x)(1+α2x2)=αx=t∫0απ4tdtα(1+tα)(1+t2)=∫0απ4tdt(t+α)(t2+1)letdecomposeF(t)=t(t+α)(t2+1)F(t)=at+α+bt+ct2+1wehavea=limt→−α(t+α)F(t)=−α1+α2limt→+∞tF(t)=0=a+b⇒b=α1+α2⇒F(t)=−α(1+α2)(t+α)+α1+α2t+c1+t2F(0)=0=−α(1+α2)α+c⇒c=11+α2⇒F(t)=−α(1+α2)(t+α)+11+α2αt+1t2+1⇒f′(α)=−α1+α2∫0απ4dtt+α+11+α2∫0απ4αt+1t2+1dtbut∫0απ4dtt+α=[ln∣t+α∣]0απ4=ln∣απ4+α∣−ln∣α∣=ln∣1+π4∣∫0απ4αt+1t2+1dt=α2[ln(t2+1)]0απ4+arctan(απ4)=α2ln(1+α2π216)+arctan(απ4)⇒f′(α)=−α1+α2ln(1+π4)+α2(1+α2)ln(1+α2π216)+11+α2arctan(απ4)⇒f(α)=−ln(1+π4)∫0αx1+x2dx+12∫0αx1+x2ln(1+x2π216)dx+∫0α11+x2arctan(πx4)dx+c(c=f(0)=0)⇒f(1)=−ln(1+π4)∫01x1+x2dx+12∫01x1+x2ln(1+x2π216)dx+∫01arctan(πx4)1+x2dx….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-value-of-0-pi-2-x-1-cosx-dx-Next Next post: Question-44005 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.