Menu Close

calculate-I-0-pi-4-arctanx-1-x-and-J-0-pi-4-arctanx-1-x-dx-




Question Number 44002 by maxmathsup by imad last updated on 19/Sep/18
calculate  I = ∫_0 ^(π/4)   ((arctanx)/(1+x))   and J = ∫_0 ^(π/4)  ((arctanx)/(1−x))dx
calculateI=0π4arctanx1+xandJ=0π4arctanx1xdx
Commented by maxmathsup by imad last updated on 24/Sep/18
let f(α) =∫_0 ^(π/4)   ((arctan(αx))/(1+x))dx ⇒I =f(1) we have  f^′ (α) = ∫_0 ^(π/4)     ((x dx)/((1+x)(1+α^2 x^2 ))) =_(αx =t)       ∫_0 ^((απ)/4)      ((tdt)/(α(1+(t/α))(1+t^2 )))  = ∫_0 ^((απ)/4)    ((tdt)/((t+α)(t^2  +1))) let decompose F(t) = (t/((t+α)(t^2  +1)))  F(t) = (a/(t+α)) +((bt +c)/(t^2  +1))  we have a=lim_(t→−α) (t+α)F(t)=((−α)/(1+α^2 ))  lim_(t→+∞) t F(t) =0 =a+b ⇒b =(α/(1+α^2 )) ⇒F(t)=−(α/((1+α^2 )(t+α))) +(((α/(1+α^2 ))t +c)/(1+t^2 ))  F(0)=0 = −(α/((1+α^2 )α)) +c ⇒c =(1/(1+α^2 )) ⇒  F(t) = −(α/((1+α^2 )(t+α))) +(1/(1+α^2 ))  ((αt +1)/(t^2  +1)) ⇒  f^′ (α) =((−α)/(1+α^2 )) ∫_0 ^((απ)/4)     (dt/(t+α))  +(1/(1+α^2 )) ∫_0 ^((απ)/4)   ((αt +1)/(t^(2 ) +1))dt  but  ∫_0 ^((απ)/4)   (dt/(t+α)) =[ln∣t+α∣]_0 ^((απ)/4)  =ln∣((απ)/4)+α∣−ln∣α∣ =ln∣1+(π/4)∣   ∫_0 ^((απ)/4)    ((αt +1)/(t^2  +1)) dt =(α/2)[ln(t^2  +1)]_0 ^((απ)/4)   +arctan(((απ)/4))  =(α/2)ln(1+((α^2 π^2 )/(16))) +arctan(((απ)/4)) ⇒  f^′ (α) =((−α)/(1+α^2 ))ln(1+(π/4)) + (α/(2(1+α^2 )))ln(1+((α^2 π^2 )/(16))) +(1/(1+α^2 ))arctan(((απ)/4)) ⇒  f(α) =−ln(1+(π/4)) ∫_0 ^α    (x/(1+x^2 ))dx +(1/2) ∫_0 ^α  (x/(1+x^2 ))ln(1+((x^2 π^2 )/(16)))dx +∫_0 ^α  (1/(1+x^2 ))arctan(((πx)/4))dx  +c ( c=f(0)=0) ⇒  f(1) =−ln(1+(π/4)) ∫_0 ^1   (x/(1+x^2 ))dx +(1/2) ∫_0 ^1   (x/(1+x^2 ))ln(1+((x^2 π^2 )/(16)))dx  +∫_0 ^1   ((arctan(((πx)/4)))/(1+x^2 ))dx ....be continued...
letf(α)=0π4arctan(αx)1+xdxI=f(1)wehavef(α)=0π4xdx(1+x)(1+α2x2)=αx=t0απ4tdtα(1+tα)(1+t2)=0απ4tdt(t+α)(t2+1)letdecomposeF(t)=t(t+α)(t2+1)F(t)=at+α+bt+ct2+1wehavea=limtα(t+α)F(t)=α1+α2limt+tF(t)=0=a+bb=α1+α2F(t)=α(1+α2)(t+α)+α1+α2t+c1+t2F(0)=0=α(1+α2)α+cc=11+α2F(t)=α(1+α2)(t+α)+11+α2αt+1t2+1f(α)=α1+α20απ4dtt+α+11+α20απ4αt+1t2+1dtbut0απ4dtt+α=[lnt+α]0απ4=lnαπ4+αlnα=ln1+π40απ4αt+1t2+1dt=α2[ln(t2+1)]0απ4+arctan(απ4)=α2ln(1+α2π216)+arctan(απ4)f(α)=α1+α2ln(1+π4)+α2(1+α2)ln(1+α2π216)+11+α2arctan(απ4)f(α)=ln(1+π4)0αx1+x2dx+120αx1+x2ln(1+x2π216)dx+0α11+x2arctan(πx4)dx+c(c=f(0)=0)f(1)=ln(1+π4)01x1+x2dx+1201x1+x2ln(1+x2π216)dx+01arctan(πx4)1+x2dx.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *