Menu Close

calculate-I-0-pi-4-cosx-cos-3-x-sin-3-x-dx-




Question Number 41703 by abdo.msup.com last updated on 11/Aug/18
calculate  I = ∫_0 ^(π/4)    ((cosx)/(cos^3 x +sin^3 x))dx
calculateI=0π4cosxcos3x+sin3xdx
Commented by math khazana by abdo last updated on 12/Aug/18
I  = ∫_0 ^(π/4)   (((cosx)/(cos^3 x))/((cos^3 x +sin^3 x)/(cos^3 x))) dx =∫_0 ^(π/4)      (1/(cos^2 x(1+tan^3 x)))dx  =∫_0 ^(π/4) ((1+tan^2 x)/(1+tan^3 x)) dx =_(tanx=t)     ∫_0 ^1     ((1+t^2 )/(1+t^3 )) (dt/(1+t^2 ))  = ∫_0 ^1    (dt/(1+t^3 ))  let decompose   F(t)= (1/(t^3  +1)) =(1/((t+1)(t^2 −t +1)))  F(t)=(a/(t+1)) +((bt +c)/(t^2 −t +1))  a =lim_(t→−1) (t+1)F(t) =(1/3)  lim_(t→+∞) tF(t)=0=a +b ⇒b=−(1/3) ⇒  F(t) = (1/(3(t+1))) +((−(1/3)t +c)/(t^2 −t +1))  F(0) =1 =(1/3) +c ⇒c=(2/3) ⇒  F(t) = (1/(3(t+1))) −(1/3) ((t−2)/(t^2 −t +1)) ⇒  ∫_0 ^1 F(t)dt =(1/3)[ln∣t+1∣]_0 ^1   −(1/3) ∫_0 ^1   ((t−2)/(t^2 −t +1))dt  =((ln(2))/3) −(1/6) ∫_0 ^1  ((2t−1−3)/(t^2 −t +1)) dt  =((ln(2))/3) −[(1/6)ln∣t^2 −t+1∣ ]_0 ^1   +(1/2) ∫_0 ^1    (dt/(t^2 −t +1))  =((ln(2))/3) +(1/2) ∫_0 ^1     (dt/((t−(1/2))^2  +(3/4)))  =_(t−(1/2)=((√3)/2)u)    ((ln(2))/3) +(1/2) (4/3)  ∫_(−(1/( (√3)))) ^(1/( (√3)))     (1/(1+u^2 )) ((√3)/2) du  =((ln(2))/3)  + ((√3)/3) [ arctanu]_(−(1/( (√3)))) ^(1/( (√3)))   =((ln(2))/3) + (1/( (√3))){ 2 arctan((1/( (√3))))}  =((ln(2))/3) +(2/( (√3))) (π/6) ⇒ I = ((ln(2))/3) +(π/(3(√3))) .
I=0π4cosxcos3xcos3x+sin3xcos3xdx=0π41cos2x(1+tan3x)dx=0π41+tan2x1+tan3xdx=tanx=t011+t21+t3dt1+t2=01dt1+t3letdecomposeF(t)=1t3+1=1(t+1)(t2t+1)F(t)=at+1+bt+ct2t+1a=limt1(t+1)F(t)=13limt+tF(t)=0=a+bb=13F(t)=13(t+1)+13t+ct2t+1F(0)=1=13+cc=23F(t)=13(t+1)13t2t2t+101F(t)dt=13[lnt+1]011301t2t2t+1dt=ln(2)316012t13t2t+1dt=ln(2)3[16lnt2t+1]01+1201dtt2t+1=ln(2)3+1201dt(t12)2+34=t12=32uln(2)3+1243131311+u232du=ln(2)3+33[arctanu]1313=ln(2)3+13{2arctan(13)}=ln(2)3+23π6I=ln(2)3+π33.

Leave a Reply

Your email address will not be published. Required fields are marked *