Menu Close

calculate-i-1-49-cos-pi-40-i-sin-pi-40-10-




Question Number 56144 by gunawan last updated on 11/Mar/19
calculate (i−1)^(49) (cos (π/(40))+i sin (π/(40)))^(10)
calculate(i1)49(cosπ40+isinπ40)10
Answered by Smail last updated on 11/Mar/19
(i−1)^(49) =[(√2)(((√2)/2)−i((√2)/2))]^(49)   =(√2^(49) )(e^(i(π/4)) )^(49) =2^(24) (√2)e^(i((49π)/4)) =2^(24) (√2)e^(i((π/4)+12π))   =2^(24) (√2)e^(i(π/4))   (cos(π/(40))+isin(π/(40)))^(10) =(e^(i(π/(40))) )^(10) =e^(i(π/4))   (i−1)^(49) (cos(π/(40))+isin(π/(40)))^(10) =(2^(24) (√2)e^(i(π/4)) )e^(i(π/4))   =2^(24) (√2)e^(i(π/2))   =2^(24) (√2)i
(i1)49=[2(22i22)]49=249(eiπ4)49=2242ei49π4=2242ei(π4+12π)=2242eiπ4(cosπ40+isinπ40)10=(eiπ40)10=eiπ4(i1)49(cosπ40+isinπ40)10=(2242eiπ4)eiπ4=2242eiπ2=2242i

Leave a Reply

Your email address will not be published. Required fields are marked *