Menu Close

calculate-I-1-x-2-1-x-4-x-2-1-dx-




Question Number 86258 by lémùst last updated on 27/Mar/20
calculate I=∫_1 ^(+∞) ((x^2 −1)/(x^4 −x^2 +1))dx
calculateI=1+x21x4x2+1dx
Commented by mathmax by abdo last updated on 27/Mar/20
I =∫_1 ^(+∞)  ((x^2 −1)/(x^4 −x^2  +1))dx   (complex method)  x^4 −x^2  +1 =0 →t^2 −t+1 =0  (t=x^2 )  Δ=1−4=−3 ⇒t_1 =((1+i(√3))/2)=e^((iπ)/6)   and t_2 =((1−i(√3))/2)=e^(−((iπ)/6))   ⇒((x^2 −1)/(x^4 −x^2  +1)) =((x^2 −1)/((x^2 −e^((iπ)/6) )(x^2  −e^(−((iπ)/6)) ))) =((x^2 −1)/(2isin((π/6)))){(1/(x^2 −e^((iπ)/6) ))−(1/(x^2  −e^(−((iπ)/6)) ))}  =−i(((x^2 −1)/(x^2 −e^((iπ)/6) )) −((x^2 −1)/(x^2  −e^(−((iπ)/6)) ))) =−i(((x^2 −e^((iπ)/6)  +e^((iπ)/6) −1)/(x^2 −e^((iπ)/6) ))−((x^2 −e^(−((iπ)/6)) +e^(−((iπ)/6)) −1)/(x^2 −e^(−((iπ)/6)) )))  =−i{((e^((iπ)/6) −1)/(x^2 −e^((iπ)/6) ))−((e^(−((iπ)/6)) −1)/(x^2 −e^(−((iπ)/6)) ))} ⇒I=i(e^(−((iπ)/6)) −1)∫_1 ^(+∞)  (dx/(x^2 −e^(−((iπ)/6)) ))  −i(e^((iπ)/6) −1)∫_1 ^(+∞) (dx/(x^2 −e^((iπ)/6) ))  ∫_1 ^(+∞)  (dx/(x^2 −e^((iπ)/6) )) =∫_1 ^(+∞)   (dx/((x−e^((iπ)/(12)) )(x+e^((iπ)/(12)) )))  =(1/2)e^(−((iπ)/(12))) ∫_1 ^(+∞)  ((1/(x−e^((iπ)/(12)) ))−(1/(x+e^((iπ)/(12)) )))dx  =(1/2)e^(−((iπ)/(12))) [ln(((x−e^((iπ)/(12)) )/(x+e^((iπ)/(12)) )))]_1 ^(+∞)  =(1/2)e^(−((iπ)/(12))) {−ln(((1−e^((iπ)/(12)) )/(1+e^((iπ)/(12)) )))}  ...becontinued...
I=1+x21x4x2+1dx(complexmethod)x4x2+1=0t2t+1=0(t=x2)Δ=14=3t1=1+i32=eiπ6andt2=1i32=eiπ6x21x4x2+1=x21(x2eiπ6)(x2eiπ6)=x212isin(π6){1x2eiπ61x2eiπ6}=i(x21x2eiπ6x21x2eiπ6)=i(x2eiπ6+eiπ61x2eiπ6x2eiπ6+eiπ61x2eiπ6)=i{eiπ61x2eiπ6eiπ61x2eiπ6}I=i(eiπ61)1+dxx2eiπ6i(eiπ61)1+dxx2eiπ61+dxx2eiπ6=1+dx(xeiπ12)(x+eiπ12)=12eiπ121+(1xeiπ121x+eiπ12)dx=12eiπ12[ln(xeiπ12x+eiπ12)]1+=12eiπ12{ln(1eiπ121+eiπ12)}becontinued
Commented by lémùst last updated on 28/Mar/20
sir how do you calculate the logarith of a  complex ?
sirhowdoyoucalculatethelogarithofacomplex?
Commented by mathmax by abdo last updated on 31/Mar/20
ln(x+iy) =ln((√(x^2 +y^2 ))e^(i arctan((y/x))) )  =(1/2)ln(x^2  +y^2 )+iarctan((y/x))  (principle determination of ln)
ln(x+iy)=ln(x2+y2eiarctan(yx))=12ln(x2+y2)+iarctan(yx)(principledeterminationofln)
Answered by TANMAY PANACEA. last updated on 28/Mar/20
∫((1−(1/x^2 ))/(x^2 −1+(1/x^2 )))dx  ∫((d(x+(1/x)))/((x+(1/x))^2 −3))=(1/(2(√3)))ln(((x+(1/x)−(√3))/(x+(1/x)+(√3))))  useing formula ∫(dp/(p^2 −a^2 ))
11x2x21+1x2dxd(x+1x)(x+1x)23=123ln(x+1x3x+1x+3)useingformuladpp2a2
Commented by lémùst last updated on 28/Mar/20
thanks sir
thankssir
Commented by TANMAY PANACEA. last updated on 28/Mar/20
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *