Question Number 86258 by lémùst last updated on 27/Mar/20

Commented by mathmax by abdo last updated on 27/Mar/20
![I =∫_1 ^(+∞) ((x^2 −1)/(x^4 −x^2 +1))dx (complex method) x^4 −x^2 +1 =0 →t^2 −t+1 =0 (t=x^2 ) Δ=1−4=−3 ⇒t_1 =((1+i(√3))/2)=e^((iπ)/6) and t_2 =((1−i(√3))/2)=e^(−((iπ)/6)) ⇒((x^2 −1)/(x^4 −x^2 +1)) =((x^2 −1)/((x^2 −e^((iπ)/6) )(x^2 −e^(−((iπ)/6)) ))) =((x^2 −1)/(2isin((π/6)))){(1/(x^2 −e^((iπ)/6) ))−(1/(x^2 −e^(−((iπ)/6)) ))} =−i(((x^2 −1)/(x^2 −e^((iπ)/6) )) −((x^2 −1)/(x^2 −e^(−((iπ)/6)) ))) =−i(((x^2 −e^((iπ)/6) +e^((iπ)/6) −1)/(x^2 −e^((iπ)/6) ))−((x^2 −e^(−((iπ)/6)) +e^(−((iπ)/6)) −1)/(x^2 −e^(−((iπ)/6)) ))) =−i{((e^((iπ)/6) −1)/(x^2 −e^((iπ)/6) ))−((e^(−((iπ)/6)) −1)/(x^2 −e^(−((iπ)/6)) ))} ⇒I=i(e^(−((iπ)/6)) −1)∫_1 ^(+∞) (dx/(x^2 −e^(−((iπ)/6)) )) −i(e^((iπ)/6) −1)∫_1 ^(+∞) (dx/(x^2 −e^((iπ)/6) )) ∫_1 ^(+∞) (dx/(x^2 −e^((iπ)/6) )) =∫_1 ^(+∞) (dx/((x−e^((iπ)/(12)) )(x+e^((iπ)/(12)) ))) =(1/2)e^(−((iπ)/(12))) ∫_1 ^(+∞) ((1/(x−e^((iπ)/(12)) ))−(1/(x+e^((iπ)/(12)) )))dx =(1/2)e^(−((iπ)/(12))) [ln(((x−e^((iπ)/(12)) )/(x+e^((iπ)/(12)) )))]_1 ^(+∞) =(1/2)e^(−((iπ)/(12))) {−ln(((1−e^((iπ)/(12)) )/(1+e^((iπ)/(12)) )))} ...becontinued...](https://www.tinkutara.com/question/Q86264.png)
Commented by lémùst last updated on 28/Mar/20

Commented by mathmax by abdo last updated on 31/Mar/20

Answered by TANMAY PANACEA. last updated on 28/Mar/20

Commented by lémùst last updated on 28/Mar/20

Commented by TANMAY PANACEA. last updated on 28/Mar/20
