Menu Close

Calculate-i-cos-arctan-x-ii-cos-arcsin-x-iii-tan-arcsin-x-




Question Number 93239 by Ar Brandon last updated on 11/May/20
Calculate;  i) cos(arctan x)  ii) cos(arcsin x)  iii) tan(arcsin x)
Calculate;i)cos(arctanx)ii)cos(arcsinx)iii)tan(arcsinx)
Commented by mathmax by abdo last updated on 12/May/20
1) vhangement arctanx =t give x =tant ⇒  cos(arctanx) =cost =(√(1/(1+tan^2 t)))=(1/( (√(1+x^2 ))))  2)let arcsinx =u ⇒x =sinu ⇒  cos(arcsinx) =cosu =(√(1−sin^2 u))=(√(1−x^2 ))  3)let arcsinx =u ⇒x =sinu ⇒tan(arcsinx) =tanu  =((sinu)/(cosu)) =((sinu)/( (√(1−sin^2 u)))) =(x/( (√(1−x^2 ))))
1)vhangementarctanx=tgivex=tantcos(arctanx)=cost=11+tan2t=11+x22)letarcsinx=ux=sinucos(arcsinx)=cosu=1sin2u=1x23)letarcsinx=ux=sinutan(arcsinx)=tanu=sinucosu=sinu1sin2u=x1x2
Commented by Ar Brandon last updated on 12/May/20
Thanks Mathmax ��
Commented by mathmax by abdo last updated on 12/May/20
you are welcome.
youarewelcome.
Answered by hknkrc46 last updated on 12/May/20
i) arctan x=u ⇒ tan u=x ∧ cos u=h=?  tan u=((sin u)/(cos u))=((√(1−cos^2 u))/(cos u))=((√(1−h^2 ))/h)=x  ⇒ (√(1−h^2 ))=hx ⇒ 1−h^2 =h^2 x^2   ⇒ h^2 x^2 +h^2 =1 ⇒ h^2 (x^2 +1)=1  ⇒ h^2 =(1/(x^2 +1)) ⇒ h=(1/( (√(x^2 +1))))  ii) arcsin x=u ⇒ sin u=x ∧ cos u=?  cos u=(√(cos^2 u))=(√(1−sin^2 u))=(√(1−x^2 ))  iii) arcsin x=u ⇒ sin u=x ∧ tan u=h=?  h=tan u=((sin u)/(cos u))=((sin u)/( (√(1−sin^2 u))))=(x/( (√(1−x^2 ))))
i)arctanx=utanu=xcosu=h=?tanu=sinucosu=1cos2ucosu=1h2h=x1h2=hx1h2=h2x2h2x2+h2=1h2(x2+1)=1h2=1x2+1h=1x2+1ii)arcsinx=usinu=xcosu=?cosu=cos2u=1sin2u=1x2iii)arcsinx=usinu=xtanu=h=?h=tanu=sinucosu=sinu1sin2u=x1x2
Commented by Ar Brandon last updated on 12/May/20
hknkrc46 Thank you sir ��
Answered by Rio Michael last updated on 12/May/20
(i) cos (arctan x )  my approach    let arctan x = u ⇒ tan u = x  ⇒ ((sin u)/(cos u)) = x        ((sin^2 u)/(cos^2 u)) = x^2   ⇒ ((sin^2 u)/(cos^2 u)) + 1 = x^2  + 1  hence ((sin^2 u + cos^2 u)/(cos^2 u)) = x^2  + 1       (1/(x^2  +1)) = cos^2 u  ⇒ cos u = (√(1/(x^2 +1)))  for −(π/2) ≤ x ≤ (π/2)  since you were not specific.
(i)cos(arctanx)myapproachletarctanx=utanu=xsinucosu=xsin2ucos2u=x2sin2ucos2u+1=x2+1hencesin2u+cos2ucos2u=x2+11x2+1=cos2ucosu=1x2+1forπ2xπ2sinceyouwerenotspecific.
Commented by Ar Brandon last updated on 12/May/20
Thanks Mr Rio Michael. Good Day Sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *