Menu Close

calculate-I-D-x-3-dxdy-on-the-domain-D-x-y-R-2-1-x-2-x-2-y-2-1-0-




Question Number 34312 by prof Abdo imad last updated on 03/May/18
calculate I  = ∫∫_D x^3 dxdy   on the domain  D ={(x,y)∈R^2 /1≤x≤2 , x^2 −y^2 −1≥0}
calculateI=Dx3dxdyonthedomainD={(x,y)R2/1x2,x2y210}
Commented by math khazana by abdo last updated on 05/May/18
x^2  −y^2 −1≥0 ⇒ x^2  −1 ≥y^2  ⇒y^2  ≤ x^2 −1  ⇒ −(√(x^2 −1)) ≤y≤(√(x^2 −1))  I = ∫_1 ^2  ( ∫_(−(√(x^2 −1))) ^(√(x^2 −1))  dy)x^3  dx  = 2 ∫_1 ^2   x^3 (√(x^2 −1))dx   changement x=ch(t) ⇔  t argchx =ln( x +(√(x^2 −1)))  I = 2 ∫_0 ^(ln(2+(√3))) ch^3 t  sh(t)sh(t)dt by parts  u=sht and v^′  =sht ch^3 t  I =2( [(1/4)sht ch^4 t]_0 ^(ln(2+(√3)))  −∫_0 ^(ln(2+(√3)))  cht (1/4)ch^4  dt)  I =(1/2)( sh(ln(2+(√3)))ch^4 (ln(2+(√3)) −(1/2) ∫_0 ^(ln(2+(√3))) ch^5 t dt  but  ch^5 t = (((e^t  +e^(−t) )/2))^5  =(1/(32)) Σ_(k=0) ^5  C_5 ^k   e^(kt)  e^((5−k)t)  ...
x2y210x21y2y2x21x21yx21I=12(x21x21dy)x3dx=212x3x21dxchangementx=ch(t)targchx=ln(x+x21)I=20ln(2+3)ch3tsh(t)sh(t)dtbypartsu=shtandv=shtch3tI=2([14shtch4t]0ln(2+3)0ln(2+3)cht14ch4dt)I=12(sh(ln(2+3))ch4(ln(2+3)120ln(2+3)ch5tdtbutch5t=(et+et2)5=132k=05C5kekte(5k)t

Leave a Reply

Your email address will not be published. Required fields are marked *