Menu Close

calculate-i-j-N-2-i-j-3-i-j-




Question Number 46607 by maxmathsup by imad last updated on 29/Oct/18
calculate Σ_((i,j)∈ N^2 )      ((i+j)/3^(i+j) )
calculate(i,j)N2i+j3i+j
Commented by maxmathsup by imad last updated on 30/Oct/18
we have S_n =Σ_(i=0) ^∞ ( Σ_(j=0) ^∞  ((i+j)/3^(i+j) )) =Σ_(i=0) ^∞  S_i   S_i =(i/3^i )Σ_(j=0) ^∞   (1/3^j ) +(1/3^i ) Σ_(j=0) ^∞  (j/3^j ) but Σ_(j=0) ^∞  (1/3^j ) =(1/(1−(1/3))) =(3/2) also  Σ_(j=0) ^∞  (j/3^j ) =Σ_(j=1) ^∞  j((1/3))^j  =w((1/3)) with w(x)=Σ_(n=0) ^∞  nx^n   we have Σ_(n=0) ^∞  x^n  =(1/(1−x))  for ∣x∣<1 ⇒Σ_(n=1) ^∞ nx^(n−1) =(x/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  nx^n  =(x^2 /((1−x)^2 )) ⇒w((1/3))=(1/(9((2/3))^2 )) =(1/4) ⇒S_i =(3/2)(i/3^i ) +(1/(4.3^i )) ⇒  Σ_(i=0) ^∞  S_i =(3/2) Σ_(i=0) ^∞  (i/3^i ) +(1/4) Σ_(i=0) ^∞  (1/3^i )  =(3/2) (1/4) +(1/4) (3/2) =(3/8) +(3/8) =(6/8) =(3/4) ⇒ S=(3/4) .
wehaveSn=i=0(j=0i+j3i+j)=i=0SiSi=i3ij=013j+13ij=0j3jbutj=013j=1113=32alsoj=0j3j=j=1j(13)j=w(13)withw(x)=n=0nxnwehaven=0xn=11xforx∣<1n=1nxn1=x(1x)2n=1nxn=x2(1x)2w(13)=19(23)2=14Si=32i3i+14.3ii=0Si=32i=0i3i+14i=013i=3214+1432=38+38=68=34S=34.

Leave a Reply

Your email address will not be published. Required fields are marked *