Question Number 46731 by maxmathsup by imad last updated on 30/Oct/18

Commented by maxmathsup by imad last updated on 01/Nov/18

Answered by MrW3 last updated on 01/Nov/18
![S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i^2 +j^2 )/2^(i+j) ) ((i^2 +j^2 )/2^(i+j) )=((i^2 +j^2 )/(2^i 2^j ))=(i^2 /2^i )×(1/2^j )+(1/2^i )×(j^2 /2^j ) S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i^2 +j^2 )/2^(i+j) )=Σ_(i=0) ^n (i^2 /2^i )×Σ_(j=0) ^n (1/2^j )+Σ_(i=0) ^n (1/2^i )×Σ_(j=0) ^n (j^2 /2^j ) ⇒S_n =2Σ_(i=0) ^n (i^2 /2^i )×Σ_(i=0) ^n (1/2^i ) P=Σ_(i=0) ^n (1/2^i )=2(1−(1/2^(n+1) )) Q=Σ_(i=0) ^n (i/2^i )=(1/2)+(2/2^2 )+(3/2^3 )+(4/2^4 )+...+(n/2^n ) 2Q=1+(2/2)+(3/2^2 )+(4/2^3 )+...+(n/2^(n−1) ) 2Q=1+((1+1)/2)+((1+2)/2^2 )+((1+3)/2^3 )+...+((1+n−1)/2^(n−1) ) 2Q=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))+((1/2)+(2/2^2 )+(3/2^3 )+...+((n−1)/2^(n−1) )) 2Q=2(1−(1/2^n ))+((1/2)+(2/2^2 )+(3/2^3 )+...+((n−1)/2^(n−1) )+(n/2^n ))−(n/2^n ) 2Q=2(1−(1/2^n ))+Q−(n/2^n ) ⇒Q=2(1−(1/2^n ))−(n/2^n ) ⇒Q=Σ_(i=0) ^n (i/2^i )=2(1−((n+2)/2^(n+1) )) R=Σ_(i=0) ^n (i^2 /2^i )=Σ_(i=0) ^n ((i^2 −1+1)/2^i )=Σ_(i=0) ^n ((i^2 −1)/2^i )+Σ_(i=0) ^n (1/2^i ) =Σ_(i=0) ^n (((i−1)(i−1+2))/2^i )+Σ_(i=0) ^n (1/2^i ) =Σ_(i=0) ^n (((i−1)^2 )/2^i )+Σ_(i=0) ^n ((2(i−1))/2^i )+Σ_(i=0) ^n (1/2^i ) =Σ_(i=0) ^n (((i−1)^2 )/2^i )+2Σ_(i=0) ^n (i/2^i )−Σ_(i=0) ^n (1/2^i ) =(1/2)Σ_(i=0) ^n (((i−1)^2 )/2^(i−1) )+2Q−P =(1/2)[2+(1/2)+(2^2 /2^2 )+(3^2 /2^3 )+...+(((n−1)^2 )/2^(n−1) )]+2Q−P =1+(1/2)[(1/2)+(2^2 /2^2 )+(3^2 /2^3 )+...+(((n−1)^2 )/2^(n−1) )+(n^2 /2^n )]−(n^2 /2^(n+1) )+2Q−P ⇒R=1+(R/2)−(n^2 /2^(n+1) )+2Q−P ⇒(R/2)=1−(n^2 /2^(n+1) )+2×2(1−((n+2)/2^(n+1) ))−2(1−(1/2^(n+1) )) ⇒(R/2)=3−((n^2 +4n+6)/2^(n+1) ) ⇒R=Σ_(i=0) ^n (i^2 /2^i )=2(3−((n^2 +4n+6)/2^(n+1) )) ⇒S_n =2Σ_(i=0) ^n (i^2 /2^i )×Σ_(i=0) ^n (1/2^i )=2RP=2×2(3−((n^2 +4n+6)/2^(n+1) ))×2(1−(1/2^(n+1) )) ⇒S_n =8(3−((n^2 +4n+6)/2^(n+1) ))(1−(1/2^(n+1) )) lim_(n→∞) S_n =24](https://www.tinkutara.com/question/Q46815.png)
Commented by prof Abdo imad last updated on 31/Oct/18

Commented by behi83417@gmail.com last updated on 01/Nov/18

Commented by MrW3 last updated on 01/Nov/18

Commented by MrW3 last updated on 01/Nov/18
