Menu Close

calculate-i-j-N-i-2-j-2-2-i-j-




Question Number 46731 by maxmathsup by imad last updated on 30/Oct/18
calculate Σ_((i,j)∈N)   ((i^2  +j^2 )/2^(i+j) )
calculate(i,j)Ni2+j22i+j
Commented by maxmathsup by imad last updated on 01/Nov/18
 S =Σ_(i=0) ^∞  Σ_(j=0) ^∞  (i^2 /(2^i  2^j )) +Σ_(i=0) ^∞  Σ_(j=0) ^∞  (j^2 /(2^i  2^j ))  =2Σ_(i=0) ^∞  (i^2 /2^i ).Σ_(j=0) ^∞  (1/2^j )  but  Σ_(j=0) ^∞  (1/2^j ) =(1/(1−(1/2))) =2  and Σ_(i=0) ^∞  (i^2 /2^i ) =w((1/2)) with  w(x)=Σ_(n=0) ^∞  n^2  x^n     let take ∣x∣<1  we have Σ_(n=0) ^∞  x^n  =(1/(1−x)) ⇒  Σ_(n=1) ^∞  nx^(n−1)  =(1/((1−x)^2 )) ⇒Σ_(n=1) ^∞  nx^n  =(x/((1−x)^2 )) ⇒  Σ_(n=1) ^∞  n^2  x^(n−1)  =(((1−x)^2 −x(−2)(1−x))/((1−x)^4 )) =((1−x+2x)/((1−x)^3 )) =((1+x)/((1−x)^3 )) ⇒  Σ_(n=1) ^∞  n^2 x^n  = ((x+x^2 )/((1−x)^3 )) ⇒ w((1/2)) =(((1/(2 ))+(1/4))/(((1/2))^3 )) =8.(3/4) =6 ⇒  S =2 .6.2 =24 ⇒ ★ S=24★.
S=i=0j=0i22i2j+i=0j=0j22i2j=2i=0i22i.j=012jbutj=012j=1112=2andi=0i22i=w(12)withw(x)=n=0n2xnlettakex∣<1wehaven=0xn=11xn=1nxn1=1(1x)2n=1nxn=x(1x)2n=1n2xn1=(1x)2x(2)(1x)(1x)4=1x+2x(1x)3=1+x(1x)3n=1n2xn=x+x2(1x)3w(12)=12+14(12)3=8.34=6S=2.6.2=24S=24.
Answered by MrW3 last updated on 01/Nov/18
S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i^2 +j^2 )/2^(i+j) )  ((i^2 +j^2 )/2^(i+j) )=((i^2 +j^2 )/(2^i 2^j ))=(i^2 /2^i )×(1/2^j )+(1/2^i )×(j^2 /2^j )  S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i^2 +j^2 )/2^(i+j) )=Σ_(i=0) ^n (i^2 /2^i )×Σ_(j=0) ^n (1/2^j )+Σ_(i=0) ^n (1/2^i )×Σ_(j=0) ^n (j^2 /2^j )  ⇒S_n =2Σ_(i=0) ^n (i^2 /2^i )×Σ_(i=0) ^n (1/2^i )  P=Σ_(i=0) ^n (1/2^i )=2(1−(1/2^(n+1) ))  Q=Σ_(i=0) ^n (i/2^i )=(1/2)+(2/2^2 )+(3/2^3 )+(4/2^4 )+...+(n/2^n )  2Q=1+(2/2)+(3/2^2 )+(4/2^3 )+...+(n/2^(n−1) )  2Q=1+((1+1)/2)+((1+2)/2^2 )+((1+3)/2^3 )+...+((1+n−1)/2^(n−1) )  2Q=(1+(1/2)+(1/2^2 )+(1/2^3 )+...+(1/2^(n−1) ))+((1/2)+(2/2^2 )+(3/2^3 )+...+((n−1)/2^(n−1) ))  2Q=2(1−(1/2^n ))+((1/2)+(2/2^2 )+(3/2^3 )+...+((n−1)/2^(n−1) )+(n/2^n ))−(n/2^n )  2Q=2(1−(1/2^n ))+Q−(n/2^n )  ⇒Q=2(1−(1/2^n ))−(n/2^n )  ⇒Q=Σ_(i=0) ^n (i/2^i )=2(1−((n+2)/2^(n+1) ))  R=Σ_(i=0) ^n (i^2 /2^i )=Σ_(i=0) ^n ((i^2 −1+1)/2^i )=Σ_(i=0) ^n ((i^2 −1)/2^i )+Σ_(i=0) ^n (1/2^i )  =Σ_(i=0) ^n (((i−1)(i−1+2))/2^i )+Σ_(i=0) ^n (1/2^i )  =Σ_(i=0) ^n (((i−1)^2 )/2^i )+Σ_(i=0) ^n ((2(i−1))/2^i )+Σ_(i=0) ^n (1/2^i )  =Σ_(i=0) ^n (((i−1)^2 )/2^i )+2Σ_(i=0) ^n (i/2^i )−Σ_(i=0) ^n (1/2^i )  =(1/2)Σ_(i=0) ^n (((i−1)^2 )/2^(i−1) )+2Q−P  =(1/2)[2+(1/2)+(2^2 /2^2 )+(3^2 /2^3 )+...+(((n−1)^2 )/2^(n−1) )]+2Q−P  =1+(1/2)[(1/2)+(2^2 /2^2 )+(3^2 /2^3 )+...+(((n−1)^2 )/2^(n−1) )+(n^2 /2^n )]−(n^2 /2^(n+1) )+2Q−P  ⇒R=1+(R/2)−(n^2 /2^(n+1) )+2Q−P  ⇒(R/2)=1−(n^2 /2^(n+1) )+2×2(1−((n+2)/2^(n+1) ))−2(1−(1/2^(n+1) ))  ⇒(R/2)=3−((n^2 +4n+6)/2^(n+1) )  ⇒R=Σ_(i=0) ^n (i^2 /2^i )=2(3−((n^2 +4n+6)/2^(n+1) ))  ⇒S_n =2Σ_(i=0) ^n (i^2 /2^i )×Σ_(i=0) ^n (1/2^i )=2RP=2×2(3−((n^2 +4n+6)/2^(n+1) ))×2(1−(1/2^(n+1) ))  ⇒S_n =8(3−((n^2 +4n+6)/2^(n+1) ))(1−(1/2^(n+1) ))  lim_(n→∞) S_n =24
Sn=ni=0nj=0i2+j22i+ji2+j22i+j=i2+j22i2j=i22i×12j+12i×j22jSn=ni=0nj=0i2+j22i+j=ni=0i22i×nj=012j+ni=012i×nj=0j22jSn=2ni=0i22i×ni=012iP=ni=012i=2(112n+1)Q=ni=0i2i=12+222+323+424++n2n2Q=1+22+322+423++n2n12Q=1+1+12+1+222+1+323++1+n12n12Q=(1+12+122+123++12n1)+(12+222+323++n12n1)2Q=2(112n)+(12+222+323++n12n1+n2n)n2n2Q=2(112n)+Qn2nQ=2(112n)n2nQ=ni=0i2i=2(1n+22n+1)R=ni=0i22i=ni=0i21+12i=ni=0i212i+ni=012i=ni=0(i1)(i1+2)2i+ni=012i=ni=0(i1)22i+ni=02(i1)2i+ni=012i=ni=0(i1)22i+2ni=0i2ini=012i=12ni=0(i1)22i1+2QP=12[2+12+2222+3223++(n1)22n1]+2QP=1+12[12+2222+3223++(n1)22n1+n22n]n22n+1+2QPR=1+R2n22n+1+2QPR2=1n22n+1+2×2(1n+22n+1)2(112n+1)R2=3n2+4n+62n+1R=ni=0i22i=2(3n2+4n+62n+1)Sn=2ni=0i22i×ni=012i=2RP=2×2(3n2+4n+62n+1)×2(112n+1)Sn=8(3n2+4n+62n+1)(112n+1)limnSn=24
Commented by prof Abdo imad last updated on 31/Oct/18
thnk you sir.
thnkyousir.
Commented by behi83417@gmail.com last updated on 01/Nov/18
sir mrW3! you are always the best.
sirmrW3!youarealwaysthebest.
Commented by MrW3 last updated on 01/Nov/18
thank you too sirs!  I am thinking about how to calculate  Σ(i^3 /2^i )  Σ(i^4 /2^i )  etc.  any idea?  my try is to use the same method as above, e.g.  i^3 −(i−1)^3 =3i^2 −3i+1  ⇒i^3 =(i−1)^3 +3i^2 −3i+1
thankyoutoosirs!IamthinkingabouthowtocalculateΣi32iΣi42ietc.anyidea?mytryistousethesamemethodasabove,e.g.i3(i1)3=3i23i+1i3=(i1)3+3i23i+1
Commented by MrW3 last updated on 01/Nov/18
let S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i^3 +j^3 )/2^(i+j) )=2Σ_(i=0) ^n (i^3 /2^i )Σ_(i=0) ^n (1/2^i )  we have already:  P=Σ_(i=0) ^n (1/2^i )=2(1−(1/2^(n+1) ))  Q=Σ_(i=0) ^n (i/2^i )=2(1−((n+2)/2^(n+1) ))  R=Σ_(i=0) ^n (i^2 /2^i )=2(3−((n^2 +4n+6)/2^(n+1) ))  let T=Σ_(i=0) ^n (i^3 /2^i )  since i^3 =(i−1)^3 +3i^2 −3i+1  T=Σ_(i=0) ^n (((i−1)^3 +3i^2 −3i+1)/2^i )  T=Σ_(i=0) ^n (((i−1)^3 )/2^i )+3R−3Q+P  T=(1/2)Σ_(i=0) ^n (((i−1)^3 )/2^(i−1) )+3R−3Q+P  T=(1/2)(−2)+(1/2)Σ_(i=1) ^n (((i−1)^3 )/2^(i−1) )+3R−3Q+P  T=−1+(1/2)Σ_(i=0) ^(n−1) (i^3 /2^i )+3R−3Q+P  T=−1+(1/2)Σ_(i=0) ^n (i^3 /2^i )−(1/2)×(n^3 /2^n )+3R−3Q+P  T=−1+(1/2)T−(1/2)×(n^3 /2^n )+3R−3Q+P  (T/2)=−1−(1/2)×(n^3 /2^n )+3R−3Q+P  ⇒T=−2−(n^3 /2^n )+6R−6Q+2P  ⇒T=−2−(n^3 /2^n )+12(3−((n^2 +4n+6)/2^(n+1) ))−12(1−((n+2)/2^(n+1) ))+4(1−(1/2^(n+1) ))  ⇒T=−2−2×(n^3 /2^(n+1) )+36−12×((n^2 +4n+6)/2^(n+1) )−12+12×((n+2)/2^(n+1) )+4−4×(1/2^(n+1) )  ⇒T=26−((2n^3 +12(n^2 +4n+6−n−2)+4)/2^(n+1) )  ⇒T=Σ_(i=0) ^n (i^3 /2^i )=2(13−((n^3 +6n^2 +18n+26)/2^(n+1) ))    S_n =Σ_(i=0) ^n Σ_(j=0) ^n ((i^3 +j^3 )/2^(i+j) )=2Σ_(i=0) ^n (i^3 /2^i )Σ_(i=0) ^n (1/2^i )=2TP  =2×2(13−((n^3 +6n^2 +18n+26)/2^(n+1) ))2(1−(1/2^(n+1) ))  ⇒S_n =8(13−((n^3 +6n^2 +18n+26)/2^(n+1) ))(1−(1/2^(n+1) ))  lim_(n→∞) S_n =8×13=104
letSn=ni=0nj=0i3+j32i+j=2ni=0i32ini=012iwehavealready:P=ni=012i=2(112n+1)Q=ni=0i2i=2(1n+22n+1)R=ni=0i22i=2(3n2+4n+62n+1)letT=ni=0i32isincei3=(i1)3+3i23i+1T=ni=0(i1)3+3i23i+12iT=ni=0(i1)32i+3R3Q+PT=12ni=0(i1)32i1+3R3Q+PT=12(2)+12ni=1(i1)32i1+3R3Q+PT=1+12n1i=0i32i+3R3Q+PT=1+12ni=0i32i12×n32n+3R3Q+PT=1+12T12×n32n+3R3Q+PT2=112×n32n+3R3Q+PT=2n32n+6R6Q+2PT=2n32n+12(3n2+4n+62n+1)12(1n+22n+1)+4(112n+1)T=22×n32n+1+3612×n2+4n+62n+112+12×n+22n+1+44×12n+1T=262n3+12(n2+4n+6n2)+42n+1T=ni=0i32i=2(13n3+6n2+18n+262n+1)Sn=ni=0nj=0i3+j32i+j=2ni=0i32ini=012i=2TP=2×2(13n3+6n2+18n+262n+1)2(112n+1)Sn=8(13n3+6n2+18n+262n+1)(112n+1)limnSn=8×13=104

Leave a Reply

Your email address will not be published. Required fields are marked *