Menu Close

calculate-I-n-0-1-sin-narcsinx-dx-




Question Number 84574 by msup trace by abdo last updated on 14/Mar/20
calculate  I_n =∫_0 ^1  sin(narcsinx)dx
calculateIn=01sin(narcsinx)dx
Commented by mathmax by abdo last updated on 15/Mar/20
changement arcsinx=t give x=sint ⇒  I_n =∫_0 ^(π/2)  sin(nt)cost dt  we have  sin(nt)cost =cos((π/2)−nt)cost =(1/2){cos((π/2)−nt +t)+cos((π/2)−nt−t)}  =(1/2){cos((π/2)−(n−1)t)+cos((π/2)−(n+1)t)}  =(1/2){sin(n−1)t+sin(n+1)t} ⇒  I_n =(1/2)∫_0 ^(π/2) sin((n−1)t) dt+(1/2)∫_0 ^(π/2)  sin((n+1)t) dt  =−(1/(2(n−1)))[cos(n−1)t]_0 ^(π/2)  −(1/(2(n+1)))[cos(n+1)t]_0 ^(π/2)     (n≠1)  =−(1/(2(n−1))){cos(n−1)(π/2)−1}−(1/(2(n+1))){cos(n+1)(π/2)−1}  =−(1/(2(n−1))){sin(((nπ)/2))−1}+(1/(2(n+1))){sin(((nπ)/2))+1}  =sin(((nπ)/2))((1/(2(n+1)))−(1/(2(n−1))))+(1/(2(n−1))) +(1/(2(n+1)))  =(1/2)sin(((nπ)/2))(((−2)/(n^2 −1)))+(1/2)(((2n)/(n^2 −1)))  =−((sin(((nπ)/2)))/(n^2 −1)) +(n/(n^2 −1)) ⇒I_n =(1/(n^2 −1))(n−sin(((nπ)/2)))  I_1 =∫_0 ^(π/2)  sint cost dt =(1/2)∫_0 ^(π/2)  sin(2t) dt =−(1/4)[cos(2t)]_0 ^(π/2)   =−(1/4)(−2) =(1/2)
changementarcsinx=tgivex=sintIn=0π2sin(nt)costdtwehavesin(nt)cost=cos(π2nt)cost=12{cos(π2nt+t)+cos(π2ntt)}=12{cos(π2(n1)t)+cos(π2(n+1)t)}=12{sin(n1)t+sin(n+1)t}In=120π2sin((n1)t)dt+120π2sin((n+1)t)dt=12(n1)[cos(n1)t]0π212(n+1)[cos(n+1)t]0π2(n1)=12(n1){cos(n1)π21}12(n+1){cos(n+1)π21}=12(n1){sin(nπ2)1}+12(n+1){sin(nπ2)+1}=sin(nπ2)(12(n+1)12(n1))+12(n1)+12(n+1)=12sin(nπ2)(2n21)+12(2nn21)=sin(nπ2)n21+nn21In=1n21(nsin(nπ2))I1=0π2sintcostdt=120π2sin(2t)dt=14[cos(2t)]0π2=14(2)=12

Leave a Reply

Your email address will not be published. Required fields are marked *