Menu Close

calculate-I-n-0-pi-dx-1-cos-2-nx-




Question Number 36936 by maxmathsup by imad last updated on 07/Jun/18
calculate I_n  = ∫_0 ^π    (dx/(1+cos^2 (nx)))
calculateIn=0πdx1+cos2(nx)
Commented by math khazana by abdo last updated on 02/Aug/18
we have I_n = ∫_0 ^π      (dx/(1+((1+cos(2nx))/2)))  = ∫_0 ^π      ((2dx)/(3+cos(2nx))) =_(2nx=t)    ∫_0 ^(2nπ)      (2/(3+cost)) (dt/(2n))  =(1/n) ∫_0 ^(2nπ)      (dt/(3+cost)) ⇒nI_n  =Σ_(k=0) ^(n−1)  ∫_(2kπ) ^(2(k+1)π)   (dt/(3+cost))  =_(t=2kπ +x)  Σ_(k=0) ^(n−1)   ∫_0 ^(2π)      (dx/(3 +cos(x+2kπ)))  =n  ∫_0 ^(2π)      (dx/(3+cosx)) ⇒ I_n =∫_0 ^(2π)    (dx/(3+cosx)) ∀ n≥1and  I_o = π changement e^(ix)   =z give  I_n = ∫_(∣z∣=1)     (1/(3 +((z+z^(−1) )/2))) (dz/(iz))  = ∫_(∣z∣=1)   ((2dz)/(iz{ 6 +z+z^(−1) })) =∫_(∣z∣=1)  ((−2idz)/(6z+z^2  +1))  let ϕ(z) = ((−2i)/(z^2  +6z +1)) poles of ϕ?  Δ^′ =3^2 −1=8 ⇒z_1 =−3+2(√2)  and z_2 =−3−2(√2)  ∣z_1 ∣−1 =3−2(√2)−1=2−2(√2)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1=3+2(√2)−1=2+2(√2)>1 ⇒  ∫_(∣z∣=1) ϕ(z)dz =2iπ Res(ϕ,z_1 ) but  ϕ(z) =((−2i)/((z−z_1 )(z−z_2 ))) ⇒Res(ϕ,z_1 )=((−2i)/(z_1 −z_2 ))  =((−2i)/(4(√2))) =((−i)/(2(√2))) ⇒ ∫_(∣z∣=1) ϕ(z)dz =2iπ.((−i)/(2(√2))) =(π/( (√2))) ⇒  I_n =(π/( (√2)))   with n≥1 .
wehaveIn=0πdx1+1+cos(2nx)2=0π2dx3+cos(2nx)=2nx=t02nπ23+costdt2n=1n02nπdt3+costnIn=k=0n12kπ2(k+1)πdt3+cost=t=2kπ+xk=0n102πdx3+cos(x+2kπ)=n02πdx3+cosxIn=02πdx3+cosxn1andIo=πchangementeix=zgiveIn=z∣=113+z+z12dziz=z∣=12dziz{6+z+z1}=z∣=12idz6z+z2+1letφ(z)=2iz2+6z+1polesofφ?Δ=321=8z1=3+22andz2=322z11=3221=222<0⇒∣z1∣<1z21=3+221=2+22>1z∣=1φ(z)dz=2iπRes(φ,z1)butφ(z)=2i(zz1)(zz2)Res(φ,z1)=2iz1z2=2i42=i22z∣=1φ(z)dz=2iπ.i22=π2In=π2withn1.
Commented by math khazana by abdo last updated on 02/Aug/18
I_0 =(π/2)
I0=π2

Leave a Reply

Your email address will not be published. Required fields are marked *