Menu Close

calculate-I-n-1-n-n-e-x-2-3y-2-dxdy-and-find-lim-n-I-n-conclude-that-0-e-x-2-dx-pi-2-




Question Number 81996 by msup trace by abdo last updated on 17/Feb/20
calculate I_n =∫∫_([(1/n),n[)   e^(−x^2 −3y^2 ) dxdy  and find lim_(n→+∞)   I_n   conclude that ∫_0 ^∞  e^(−x^2 ) dx=((√π)/2)
$${calculate}\:{I}_{{n}} =\int\int_{\left[\frac{\mathrm{1}}{{n}},{n}\left[\right.\right.} \:\:{e}^{−{x}^{\mathrm{2}} −\mathrm{3}{y}^{\mathrm{2}} } {dxdy} \\ $$$${and}\:{find}\:{lim}_{{n}\rightarrow+\infty} \:\:{I}_{{n}} \\ $$$${conclude}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:{e}^{−{x}^{\mathrm{2}} } {dx}=\frac{\sqrt{\pi}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *