calculate-I-pi-3-pi-2-cos-2x-sin-x-cosx-dx-and-J-pi-3-pi-2-sin-2x-sin-x-cos-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42628 by prof Abdo imad last updated on 29/Aug/18 calculateI=∫π3π2cos(2x)sin(x)+cosxdxandJ=∫π3π2sin(2x)sin(x)+cos(x)dx Commented by maxmathsup by imad last updated on 30/Aug/18 wehaveI=∫π3π2cos(2x)2cos(x−π4)dxchangementx−π4=tgiveI=∫π12π2cos(2(t+π4))2costdt=∫π12π2−sin(2t)2cos(t)dt=−12∫π12π22sintcostcostdt=−2∫π12π2sin(t)dt=−2[−cost]π12π2=2{0−cos(π12)}wehavecos2(π12)=1+cos(π6)2=1+322=2+34⇒cos(π12)=2+32⇒I=−22+3=−4+23. Commented by maxmathsup by imad last updated on 30/Aug/18 wehaveJ=∫π3π2sin(2x)2sin(x+π4)dx=x+π4=t∫7π123π4sin(2(t−π4))2sintdt=∫7π123π4−cos(2t)2sintdt=−∫7π123π41−2sin2t2sintdt=∫7π123π42sintdt−12∫7π123π4dtsintbut∫7π123π42sintdt=2[−cost]7π123π4=2{cos(7π12)−cos(3π4)}=2{−sin(π12)+cos(π4)}=2{12−2−32}also∫7π123π4dtsint=tan(t2)=u∫tan(7π24)tan(3π8)12u1+u22du1+u2=[ln∣u∣]tan(7π24)tan(3π8)=ln∣tan(3π8)∣−ln∣tan(7π24)∣⇒J=2{12−2−32}−12{ln∣tan(3π8)∣−ln∣tan(7π24)∣}. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-108162Next Next post: find-A-n-0-sin-nx-sh-2nx-dx-with-n-natural-integr-not-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.