Menu Close

calculate-I-pi-3-pi-2-cos-2x-sin-x-cosx-dx-and-J-pi-3-pi-2-sin-2x-sin-x-cos-x-dx-




Question Number 42628 by prof Abdo imad last updated on 29/Aug/18
calculate  I  = ∫_(π/3) ^(π/2)      ((cos(2x))/(sin(x)+cosx))dx and  J =∫_(π/3) ^(π/2)    ((sin(2x))/(sin(x) +cos(x)))dx
calculateI=π3π2cos(2x)sin(x)+cosxdxandJ=π3π2sin(2x)sin(x)+cos(x)dx
Commented by maxmathsup by imad last updated on 30/Aug/18
we have I = ∫_(π/3) ^(π/2)      ((cos(2x))/( (√2)cos(x−(π/4))))dx   changement x−(π/4) =t give        I = ∫_(π/(12)) ^(π/2)      ((cos(2(t+(π/4))))/( (√2)cost)) dt  = ∫_(π/(12)) ^(π/2)     ((−sin(2t))/( (√2)cos(t))) dt =−(1/( (√2))) ∫_(π/(12)) ^(π/2)   ((2sint cost)/(cost))dt  =−(√2)   ∫_(π/(12)) ^(π/2)   sin(t)dt =−(√2)[−cost]_(π/(12)) ^(π/2)   =(√2){0−cos((π/(12)))}  we have cos^2 ((π/(12)))=((1+cos((π/6)))/2) =((1+((√3)/2))/2) =((2+(√3))/4) ⇒cos((π/(12)))=((√(2+(√3)))/2) ⇒  I =−(√2)(√(2+(√3)))=−(√(4+2(√3))).
wehaveI=π3π2cos(2x)2cos(xπ4)dxchangementxπ4=tgiveI=π12π2cos(2(t+π4))2costdt=π12π2sin(2t)2cos(t)dt=12π12π22sintcostcostdt=2π12π2sin(t)dt=2[cost]π12π2=2{0cos(π12)}wehavecos2(π12)=1+cos(π6)2=1+322=2+34cos(π12)=2+32I=22+3=4+23.
Commented by maxmathsup by imad last updated on 30/Aug/18
we have J = ∫_(π/3) ^(π/2)    ((sin(2x))/( (√2)sin(x+(π/4))))dx  =_(x+(π/4)=t)     ∫_((7π)/(12)) ^((3π)/4)   ((sin(2(t−(π/4))))/( (√2)sint))dt          = ∫_((7π)/(12)) ^((3π)/4)     ((−cos(2t))/( (√2)sint))dt = − ∫_((7π)/(12)) ^((3π)/4)     ((1−2sin^2 t)/( (√2)sint))dt = ∫_((7π)/(12)) ^((3π)/4)    (√2)sint dt−(1/( (√2))) ∫_((7π)/(12)) ^((3π)/4)   (dt/(sint))   but    ∫_((7π)/(12)) ^((3π)/4)  (√2)sint dt =(√2)[−cost]_((7π)/(12)) ^((3π)/4)  =(√2){ cos(((7π)/(12)))−cos(((3π)/4))}  =(√2){ −sin((π/(12))) +cos((π/4))}=(√2){ (1/( (√2))) −((√(2−(√3)))/2)} also  ∫_((7π)/(12)) ^((3π)/4)      (dt/(sint)) =_(tan((t/2)) =u)    ∫_(tan(((7π)/(24)))) ^(tan(((3π)/8)))      (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) = [ln∣u∣]_(tan(((7π)/(24)))) ^(tan(((3π)/8)))   =ln∣tan(((3π)/8))∣−ln∣tan(((7π)/(24)))∣  ⇒  J =(√2){(1/( (√2))) −((√(2−(√3)))/2)} −(1/( (√2))){ ln∣tan(((3π)/8))∣ −ln∣tan(((7π)/(24)))∣ } .
wehaveJ=π3π2sin(2x)2sin(x+π4)dx=x+π4=t7π123π4sin(2(tπ4))2sintdt=7π123π4cos(2t)2sintdt=7π123π412sin2t2sintdt=7π123π42sintdt127π123π4dtsintbut7π123π42sintdt=2[cost]7π123π4=2{cos(7π12)cos(3π4)}=2{sin(π12)+cos(π4)}=2{12232}also7π123π4dtsint=tan(t2)=utan(7π24)tan(3π8)12u1+u22du1+u2=[lnu]tan(7π24)tan(3π8)=lntan(3π8)lntan(7π24)J=2{12232}12{lntan(3π8)lntan(7π24)}.

Leave a Reply

Your email address will not be published. Required fields are marked *