Menu Close

calculate-I-x-1-x-2-1-2-dx-




Question Number 36432 by prof Abdo imad last updated on 02/Jun/18
calculate  I = ∫_(−∞) ^(+∞)    ((x+1)/((x^2  +1)^2 ))dx .
calculateI=+x+1(x2+1)2dx.
Commented by abdo mathsup 649 cc last updated on 03/Jun/18
let introduce the complex function  ϕ(z) = ((z+1)/((z^2  +1)^2 ))  we have   ϕ(z) = ((z+1)/( (z−i)^2 (z+i)^2 )) so the poles of ϕ are i and−i  (doubles)   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i) (1/((2−1)!)){ (z−i)^2 ϕ(z)}^′   =lim_(z→i)  { ((z+1)/((z+i)^2 ))}^′   = lim_(z→i)   (((z+i)^2  −2(z+i)(z+1))/((z+i)^4 ))  =lim_(z→i)  ((z+i −2z−2)/((z+i)^3 ))  =  ((−2)/((2i)^3 ))  = ((−2)/(−8i)) = (1/(4i))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (1/(4i)) = (π/2)  so  ★ I = (π/2) ★
letintroducethecomplexfunctionφ(z)=z+1(z2+1)2wehaveφ(z)=z+1(zi)2(z+i)2sothepolesofφareiandi(doubles)+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(21)!{(zi)2φ(z)}=limzi{z+1(z+i)2}=limzi(z+i)22(z+i)(z+1)(z+i)4=limziz+i2z2(z+i)3=2(2i)3=28i=14i+φ(z)dz=2iπ14i=π2soI=π2
Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jun/18
x=tan(θ  dx=sec^2 θdθ  ∫_((−Π)/2) ^(Π/2) (((tanθ +1)×sec^2 θ)/(sec^2 θ×sec^2 θ)) dθ  ∫_(−(Π/2)) ^(Π/2) { ((sinθ)/(cosθ))×cos^2 θ+cos^2 θ}dθ  ∫_(−(Π/2)) ^(Π/2) sinθd(sinθ)+∫_(−(Π/2)) ^(Π/2)  ((1+cos2θ)/2)dθ  =∣((sin^2 θ)/2)∣_(−(Π/2)) ^(Π/2)  +(1/2)∣θ∣_(−(Π/2)) ^(Π/2) +(1/2)×(1/2)∣sin2θ∣_(−(Π/2)) ^(Π/2)   =0+(1/2)(Π)+(1/4)×0  =(Π/2)
x=tan(θdx=sec2θdθΠ2Π2(tanθ+1)×sec2θsec2θ×sec2θdθΠ2Π2{sinθcosθ×cos2θ+cos2θ}dθΠ2Π2sinθd(sinθ)+Π2Π21+cos2θ2dθ=∣sin2θ2Π2Π2+12θΠ2Π2+12×12sin2θΠ2Π2=0+12(Π)+14×0=Π2
Commented by abdo mathsup 649 cc last updated on 03/Jun/18
correct answer sir Tanmay  thanks..
correctanswersirTanmaythanks..

Leave a Reply

Your email address will not be published. Required fields are marked *