Menu Close

calculate-in-terms-of-x-f-x-0-pi-2-dt-1-xsint-




Question Number 27184 by abdo imad last updated on 02/Jan/18
calculate in terms of x   f(x)= ∫_0 ^(π/(2 )) (dt/(1+xsint)) .
calculateintermsofxf(x)=0π2dt1+xsint.
Commented by abdo imad last updated on 05/Jan/18
let do the changement  tan((t/2))= α⇔t=2arctanα  f(x)= ∫_0 ^1    (((2dα)/(1+α^2 ))/(1+ ((2xα)/(1+α^2 ))))  =  ∫_0 ^1   ((2dα)/(1+α^2  +2xα))=∫_0 ^1   ((2dα)/(α^2 +2xα +1))  =∫_0 ^1     ((2dα)/((α+x)^2 +1−x^2 ))  case 1   /x/<1   we do the ch.  α+x=(√(1−x^2 )) t  f(x)= ∫_(x/( (√(1−x^2 )))) ^((x+1)/( (√(1−x^2 ))))        ((2(√(1−x^2  )) dt)/((1−x^2 )(1+t^2 )))  f(x)=(2/( (√(1−x^2 ))))  [arctan(t)]_(x/( (√(1−x^2 )))) ^((√(1+x))/( (√(1−x))))   f(x)= (2/( (√(1−x^2 )))) ( arctan(((√(1+x))/( (√(1−x)))) ) −arctan((x/( (√(1−x^2 ))))))  case2  if /x/>1    f(x)= (1/x) ∫_0 ^(π/2)    (dt/(x^(−1) +sinx))  and we can use the same mthode  due to /x^(−1) /<1.....
letdothechangementtan(t2)=αt=2arctanαf(x)=012dα1+α21+2xα1+α2=012dα1+α2+2xα=012dαα2+2xα+1=012dα(α+x)2+1x2case1/x/<1wedothech.α+x=1x2tf(x)=x1x2x+11x221x2dt(1x2)(1+t2)f(x)=21x2[arctan(t)]x1x21+x1xf(x)=21x2(arctan(1+x1x)arctan(x1x2))case2if/x/>1f(x)=1x0π2dtx1+sinxandwecanusethesamemthodedueto/x1/<1..

Leave a Reply

Your email address will not be published. Required fields are marked *