calculate-in-terms-of-x-f-x-0-pi-2-dt-1-xsint- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 27184 by abdo imad last updated on 02/Jan/18 calculateintermsofxf(x)=∫0π2dt1+xsint. Commented by abdo imad last updated on 05/Jan/18 letdothechangementtan(t2)=α⇔t=2arctanαf(x)=∫012dα1+α21+2xα1+α2=∫012dα1+α2+2xα=∫012dαα2+2xα+1=∫012dα(α+x)2+1−x2case1/x/<1wedothech.α+x=1−x2tf(x)=∫x1−x2x+11−x221−x2dt(1−x2)(1+t2)f(x)=21−x2[arctan(t)]x1−x21+x1−xf(x)=21−x2(arctan(1+x1−x)−arctan(x1−x2))case2if/x/>1f(x)=1x∫0π2dtx−1+sinxandwecanusethesamemthodedueto/x−1/<1….. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-158252Next Next post: find-D-x-y-2-e-x-2-y-2-dxdy-with-D-x-y-R-2-0-lt-x-lt-1-and-0-lt-y-lt-1-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.