Menu Close

calculate-in-terms-of-x-f-x-0-pi-2-dt-1-xsint-




Question Number 27184 by abdo imad last updated on 02/Jan/18
calculate in terms of x   f(x)= ∫_0 ^(π/(2 )) (dt/(1+xsint)) .
$${calculate}\:{in}\:{terms}\:{of}\:{x}\:\:\:{f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}\:}} \frac{{dt}}{\mathrm{1}+{xsint}}\:. \\ $$
Commented by abdo imad last updated on 05/Jan/18
let do the changement  tan((t/2))= α⇔t=2arctanα  f(x)= ∫_0 ^1    (((2dα)/(1+α^2 ))/(1+ ((2xα)/(1+α^2 ))))  =  ∫_0 ^1   ((2dα)/(1+α^2  +2xα))=∫_0 ^1   ((2dα)/(α^2 +2xα +1))  =∫_0 ^1     ((2dα)/((α+x)^2 +1−x^2 ))  case 1   /x/<1   we do the ch.  α+x=(√(1−x^2 )) t  f(x)= ∫_(x/( (√(1−x^2 )))) ^((x+1)/( (√(1−x^2 ))))        ((2(√(1−x^2  )) dt)/((1−x^2 )(1+t^2 )))  f(x)=(2/( (√(1−x^2 ))))  [arctan(t)]_(x/( (√(1−x^2 )))) ^((√(1+x))/( (√(1−x))))   f(x)= (2/( (√(1−x^2 )))) ( arctan(((√(1+x))/( (√(1−x)))) ) −arctan((x/( (√(1−x^2 ))))))  case2  if /x/>1    f(x)= (1/x) ∫_0 ^(π/2)    (dt/(x^(−1) +sinx))  and we can use the same mthode  due to /x^(−1) /<1.....
$${let}\:{do}\:{the}\:{changement}\:\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)=\:\alpha\Leftrightarrow{t}=\mathrm{2}{arctan}\alpha \\ $$$${f}\left({x}\right)=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }}{\mathrm{1}+\:\frac{\mathrm{2}{x}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} }}\:\:=\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{d}\alpha}{\mathrm{1}+\alpha^{\mathrm{2}} \:+\mathrm{2}{x}\alpha}=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\mathrm{2}{d}\alpha}{\alpha^{\mathrm{2}} +\mathrm{2}{x}\alpha\:+\mathrm{1}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{\mathrm{2}{d}\alpha}{\left(\alpha+{x}\right)^{\mathrm{2}} +\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${case}\:\mathrm{1}\:\:\:/{x}/<\mathrm{1}\:\:\:{we}\:{do}\:{the}\:{ch}.\:\:\alpha+{x}=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:{t} \\ $$$${f}\left({x}\right)=\:\int_{\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} ^{\frac{{x}+\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} \:\:\:\:\:\:\:\frac{\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} \:}\:{dt}}{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)\left(\mathrm{1}+{t}^{\mathrm{2}} \right)} \\ $$$${f}\left({x}\right)=\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\:\left[{arctan}\left({t}\right)\right]_{\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}} ^{\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{\mathrm{1}−{x}}}} \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:\left(\:{arctan}\left(\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{\mathrm{1}−{x}}}\:\right)\:−{arctan}\left(\frac{{x}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)\right) \\ $$$${case}\mathrm{2}\:\:{if}\:/{x}/>\mathrm{1}\:\: \\ $$$${f}\left({x}\right)=\:\frac{\mathrm{1}}{{x}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dt}}{{x}^{−\mathrm{1}} +{sinx}}\:\:{and}\:{we}\:{can}\:{use}\:{the}\:{same}\:{mthode} \\ $$$${due}\:{to}\:/{x}^{−\mathrm{1}} /<\mathrm{1}….. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *