Menu Close

calculate-interms-of-a-and-b-the-integral-0-arctan-bt-arctan-at-t-dt-with-a-and-b-gt-0-




Question Number 31097 by abdo imad last updated on 02/Mar/18
calculate interms of a and b the integral  ∫_0 ^∞   ((arctan(bt) −arctan(at))/t)dt  with a and b>0.
calculateintermsofaandbtheintegral0arctan(bt)arctan(at)tdtwithaandb>0.
Commented by abdo imad last updated on 05/Mar/18
let put I=∫_0 ^∞  ((arctan(bt) −arctan(at))/t)dt and for ξ>0  I(ξ)= ∫_0 ^ξ  ((arctan(bt)−arctan(at))/t)dt we have  I=lim_(ξ→+∞)  I(ξ) but I(ξ)=∫_0 ^ξ  ((arctan(bt))/t)dt −∫_0 ^ξ  ((arctan(at))/t)dt  but ∫_0 ^ξ  ((arctan(bt))/t)dt=_(bt=x)  ∫_0 ^(bξ)  ((arctanx)/x)dx  ∫_0 ^ξ  ((artan(at))/t)dt= _(at=x) ∫_0 ^(aξ)  ((arctanx)/x)dx ⇒  I(ξ)=∫_0 ^(bξ)  ((arctanx)/x)dx −∫_0 ^(aξ)  ((arctanx)/x)dx=∫_(aξ) ^(bξ)   ((arctanx)/x)dx  ∃ c∈]aξ,bξ[ / I(ξ)=arctanξ ∫_(aξ) ^(bξ)  (dx/x)=ln((b/a))arctanξ ⇒  lim _(ξ→+∞) I(ξ)=(π/2)ln((b/a)) ⇒ I=(π/2)(ln(b)−ln(a)) .
letputI=0arctan(bt)arctan(at)tdtandforξ>0I(ξ)=0ξarctan(bt)arctan(at)tdtwehaveI=limξ+I(ξ)butI(ξ)=0ξarctan(bt)tdt0ξarctan(at)tdtbut0ξarctan(bt)tdt=bt=x0bξarctanxxdx0ξartan(at)tdt=at=x0aξarctanxxdxI(ξ)=0bξarctanxxdx0aξarctanxxdx=aξbξarctanxxdxc]aξ,bξ[/I(ξ)=arctanξaξbξdxx=ln(ba)arctanξlimξ+I(ξ)=π2ln(ba)I=π2(ln(b)ln(a)).

Leave a Reply

Your email address will not be published. Required fields are marked *