Menu Close

calculate-k-0-n-1-k-2k-1-C-n-k-




Question Number 97984 by abdomathmax last updated on 10/Jun/20
calculate Σ_(k=0) ^n  (((−1)^k )/(2k+1)) C_n ^k
calculatek=0n(1)k2k+1Cnk
Answered by mr W last updated on 11/Jun/20
(1−x^2 )^n =Σ_(k=0) ^n C_k ^n (−x^2 )^k   (1−x^2 )^n =Σ_(k=0) ^n C_k ^n (−1)^k x^(2k)   ∫_0 ^1 (1−x^2 )^n dx=Σ_(k=0) ^n C_k ^n (−1)^k ∫_0 ^1 x^(2k) dx  ∫_0 ^1 (1−x^2 )^n dx=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ∫_0 ^(π/2) (1−sin^2  t)^n cos t dt=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ∫_0 ^(π/2) cos^(2n+1) t dt=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ((2n)/(2n+1))×((2n−2)/(2n−1))×...×(2/3)×∫_0 ^(π/2) cos t dt=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ((2n)/(2n+1))×((2n−2)/(2n−1))×...×(2/3)×1=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   (((2n)!!)/((2n+1)!!))=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   (([(2n)!!]^2 )/((2n+1)!))=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   (([2^n n!]^2 )/((2n+1)!))=Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n   ⇒Σ_(k=0) ^n (((−1)^k )/(2k+1))C_k ^n =((2^(2n) (n!)^2 )/((2n+1)!))
(1x2)n=nk=0Ckn(x2)k(1x2)n=nk=0Ckn(1)kx2k01(1x2)ndx=nk=0Ckn(1)k01x2kdx01(1x2)ndx=nk=0(1)k2k+1Ckn0π2(1sin2t)ncostdt=nk=0(1)k2k+1Ckn0π2cos2n+1tdt=nk=0(1)k2k+1Ckn2n2n+1×2n22n1××23×0π2costdt=nk=0(1)k2k+1Ckn2n2n+1×2n22n1××23×1=nk=0(1)k2k+1Ckn(2n)!!(2n+1)!!=nk=0(1)k2k+1Ckn[(2n)!!]2(2n+1)!=nk=0(1)k2k+1Ckn[2nn!]2(2n+1)!=nk=0(1)k2k+1Cknnk=0(1)k2k+1Ckn=22n(n!)2(2n+1)!
Commented by mathmax by abdo last updated on 10/Jun/20
thank you sir mrw
thankyousirmrw
Answered by mathmax by abdo last updated on 11/Jun/20
let p(x) =Σ_(k=0) ^n  (((−1)^k )/(2k+1)) C_n ^k  x^(2k+1 )  we have   p^′ (x) =Σ_(k=0) ^n  (−1)^k  C_n ^k  x^(2k)  =(−1)^n Σ_(k=0) ^n  C_n ^k  (x^2 )^k (−1)^(n−k)   =(−1)^n (x^2 −1)^n  =(1−x^2 )^n  ⇒p(x) =∫_0 ^x  (1−t^2 )^n  dt+c(c=0) and S_n =p(1)  =∫_0 ^1 (1−t^2 )^n  dt =_(t =sinθ)    ∫_0 ^(π/2) (cos^2 θ)^n  cosθ dθ =∫_0 ^(π/2)  cos^(2n+1) θ dθ =  let U_n =∫_0 ^(π/2)  cos^n t dt ⇒U_n =∫_0 ^(π/2)  cos^(n−2) t (1−sin^2 t)dt  =U_(n−2) −∫_0 ^(π/2)  sin^2 t cos^(n−2) t dt  but   by parts f^′  =sint cos^(n−2)  and g =sint  ∫_0 ^(π/2)  sint(sintcos^(n−2) t)dt =[−(1/(n−1))cos^(n−1) t sint]_0 ^(π/2)  +(1/(n−1))∫_0 ^(π/2) cost cos^(n−1)  t dt  =(1/(n−1))U_n  ⇒U_n =U_(n−2) −(1/(n−1))U_(n )  ⇒(1+(1/(n−1)))U_n =U_(n−2)  ⇒  (n/(n−1))U_n =U_(n−2)  ⇒U_n =((n−1)/n) U_(n−2)  ⇒U_(2n+1) =((2n)/(2n+1)) U_(2n−1)  ⇒  Π_(k=1) ^n  U_(2k+1) =Π_(k=1) ^n  ((2k)/((2k+1))) Π_(k=1) ^n  U_(2k−1)  ⇒  U_(2n+1) =U_1 × Π_(k=1) ^n  ((2k)/((2k+1)))  (U_1 =1) ⇒S_n =∫_0 ^(π/2)  cos^(2n+1) t dt =Π_(k=1) ^n  ((2k)/((2k+1)))
letp(x)=k=0n(1)k2k+1Cnkx2k+1wehavep(x)=k=0n(1)kCnkx2k=(1)nk=0nCnk(x2)k(1)nk=(1)n(x21)n=(1x2)np(x)=0x(1t2)ndt+c(c=0)andSn=p(1)=01(1t2)ndt=t=sinθ0π2(cos2θ)ncosθdθ=0π2cos2n+1θdθ=letUn=0π2cosntdtUn=0π2cosn2t(1sin2t)dt=Un20π2sin2tcosn2tdtbutbypartsf=sintcosn2andg=sint0π2sint(sintcosn2t)dt=[1n1cosn1tsint]0π2+1n10π2costcosn1tdt=1n1UnUn=Un21n1Un(1+1n1)Un=Un2nn1Un=Un2Un=n1nUn2U2n+1=2n2n+1U2n1k=1nU2k+1=k=1n2k(2k+1)k=1nU2k1U2n+1=U1×k=1n2k(2k+1)(U1=1)Sn=0π2cos2n+1tdt=k=1n2k(2k+1)

Leave a Reply

Your email address will not be published. Required fields are marked *