calculate-k-0-n-1-k-2k-1-C-n-k- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 97984 by abdomathmax last updated on 10/Jun/20 calculate∑k=0n(−1)k2k+1Cnk Answered by mr W last updated on 11/Jun/20 (1−x2)n=∑nk=0Ckn(−x2)k(1−x2)n=∑nk=0Ckn(−1)kx2k∫01(1−x2)ndx=∑nk=0Ckn(−1)k∫01x2kdx∫01(1−x2)ndx=∑nk=0(−1)k2k+1Ckn∫0π2(1−sin2t)ncostdt=∑nk=0(−1)k2k+1Ckn∫0π2cos2n+1tdt=∑nk=0(−1)k2k+1Ckn2n2n+1×2n−22n−1×…×23×∫0π2costdt=∑nk=0(−1)k2k+1Ckn2n2n+1×2n−22n−1×…×23×1=∑nk=0(−1)k2k+1Ckn(2n)!!(2n+1)!!=∑nk=0(−1)k2k+1Ckn[(2n)!!]2(2n+1)!=∑nk=0(−1)k2k+1Ckn[2nn!]2(2n+1)!=∑nk=0(−1)k2k+1Ckn⇒∑nk=0(−1)k2k+1Ckn=22n(n!)2(2n+1)! Commented by mathmax by abdo last updated on 10/Jun/20 thankyousirmrw Answered by mathmax by abdo last updated on 11/Jun/20 letp(x)=∑k=0n(−1)k2k+1Cnkx2k+1wehavep′(x)=∑k=0n(−1)kCnkx2k=(−1)n∑k=0nCnk(x2)k(−1)n−k=(−1)n(x2−1)n=(1−x2)n⇒p(x)=∫0x(1−t2)ndt+c(c=0)andSn=p(1)=∫01(1−t2)ndt=t=sinθ∫0π2(cos2θ)ncosθdθ=∫0π2cos2n+1θdθ=letUn=∫0π2cosntdt⇒Un=∫0π2cosn−2t(1−sin2t)dt=Un−2−∫0π2sin2tcosn−2tdtbutbypartsf′=sintcosn−2andg=sint∫0π2sint(sintcosn−2t)dt=[−1n−1cosn−1tsint]0π2+1n−1∫0π2costcosn−1tdt=1n−1Un⇒Un=Un−2−1n−1Un⇒(1+1n−1)Un=Un−2⇒nn−1Un=Un−2⇒Un=n−1nUn−2⇒U2n+1=2n2n+1U2n−1⇒∏k=1nU2k+1=∏k=1n2k(2k+1)∏k=1nU2k−1⇒U2n+1=U1×∏k=1n2k(2k+1)(U1=1)⇒Sn=∫0π2cos2n+1tdt=∏k=1n2k(2k+1) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-S-n-k-1-n-1-n-2-2kn-find-lim-n-S-n-Next Next post: find-lim-n-k-1-n-n-k-n-3-n-2-k- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.