calculate-k-0-n-1-k-k-1-3-C-n-k- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 100237 by mathmax by abdo last updated on 25/Jun/20 calculate∑k=0n(−1)k(k+1)3Cnk Answered by maths mind last updated on 26/Jun/20 xa(1−x)n=ΣxaCnk(−x)k=ΣCnk(−1)kxa+k⇒∫01xa(1−x)ndx=∑nk=0(−1)kCnka+k+1…Eβ(a,b)=∫01xa−1(1−x)b−1dxE=β(a+1,n+1)=∑nk=0(−1)kCnka+k+1⇒∂2∂a2β(a+1,n+1)=∑nk=02(−1)kCnk(a+k+1)3⇔∂2∂a2β(a+1,n+1)∣a=0=∑nk=02(−1)kCnk(k+1)3∂β(a+1,n+1)∂a=β(a+1,n+1)(Ψ(a+1)−Ψ(n+a+2))⇒β(a+1,n+1)(Ψ(a+1)−Ψ(n+a+2))2+β(a+1,n+1)(Ψ′(a+1)−Ψ′(n+a+2))⇔Σ2(−1)k(k+1)3Cnk=β(1,n+1)(Ψ(1)−Ψ(n+2))+β(1,n+1)(Ψ′(1)−Ψ′(n+2))β(1,n+1)=1n+1Ψ(1)−Ψ(n+2)=−Hn+1Ψ′(z)=ζ(2,z)=∑∞k=01(z+k)2Ψ′(1)−Ψ′(n+2)=−Hn+1(2)weget=1n+1(−Hn+1−Hn+1(2))=−1n+1(Hn+1+Hn+1(2))=Σ2(−1)kCnk(k+1)3⇒−12(n+1)(Hn+1+Hn+1(2))=∑nk=0(−1)kCnk(k+1)3 Commented by mathmax by abdo last updated on 26/Jun/20 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-0-1-n-1-e-x-n-lnx-dx-Next Next post: Question-165774 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.