Menu Close

calculate-k-0-n-1-n-k-n-k-




Question Number 190788 by mnjuly1970 last updated on 11/Apr/23
      calculate            Ω= Σ_(k=0) ^n (( 1)/((n−k)!.(n+k )!))
calculateΩ=nk=01(nk)!.(n+k)!
Answered by aleks041103 last updated on 12/Apr/23
(1/((n−k)!(n+k)!))=(1/((2n)!)) (((2n)!)/((n−k)!(2n−(n−k))!))=  =(1/((2n)!)) (((2n)),((n−k)) )  ⇒Ω = (1/((2n)!))Σ_(k=0) ^n  (((2n)),((n−k)) ) =  = (1/((2n)!)) Σ_(k=0) ^n  (((2n)),(k) ) =  = (1/((2n)!)) (( (((2n)),(n) ) +Σ_(k=0) ^(2n)  (((2n)),(k) ))/2)=  =((2^(2n) +(((2n)!)/((n!)^2 )))/((2n)!))    ⇒Ω = (4^n /((2n)!)) + (1/((n!)^2 ))
1(nk)!(n+k)!=1(2n)!(2n)!(nk)!(2n(nk))!==1(2n)!(2nnk)Ω=1(2n)!nk=0(2nnk)==1(2n)!nk=0(2nk)==1(2n)!(2nn)+2nk=0(2nk)2==22n+(2n)!(n!)2(2n)!Ω=4n(2n)!+1(n!)2

Leave a Reply

Your email address will not be published. Required fields are marked *