Menu Close

calculate-k-1-1-k-1-99k-1-




Question Number 65386 by mathmax by abdo last updated on 29/Jul/19
calculate Σ_(k=1) ^∞    (((−1)^(k−1) )/(99k−1))
calculatek=1(1)k199k1
Commented by mathmax by abdo last updated on 31/Jul/19
let I =∫_1 ^(+∞)  (dx/(1+x^(99) ))  cha7gement  x=(1/t) give   I =−∫_0 ^1   (1/(1+(1/t^(99) )))(−(dt/t^2 )) = ∫_0 ^1  (t^(99) /(t^2 (1+t^(99) )))dt =∫_0 ^1  (t^(97) /(1+t^(99) ))dt  =∫_0 ^1  t^(97) Σ_(k=0) ^∞  (−1)^k t^(99k)  dt = Σ_(k=0) ^∞ (−1)^k  ∫_0 ^1   t^(99k+97)  dt  =Σ_(k=0) ^∞  (−1)^k [(1/(99k+98)) t^(99k+98) ]_0 ^1  =Σ_(k=0) ^∞  (((−1)^k )/(99k+98))  =_(k=p−1)     Σ_(p=1) ^∞  (((−1)^(p−1) )/(99(p−1)+98)) =Σ_(p=1) ^∞  (((−1)^(p−1) )/(99p−1)) ⇒  Σ_(k=1) ^∞  (((−1)^(k−1) )/(99k−1)) =∫_1 ^(+∞)    (dx/(1+x^(99) ))  ∫_1 ^(+∞)   (dx/(1+x^(99) )) =∫_1 ^0 (....)dx +∫_0 ^∞     (dx/(1+x^(99) )) =∫_0 ^∞   (dx/(1+x^(99) ))−∫_0 ^1   (dx/(1+x^(99) ))  changement x =t^(1/(99))  give ∫_0 ^∞    (dx/(1+x^(99) )) =∫_0 ^∞   (1/(1+t))(1/(99))t^((1/(99))−1) dt  =(1/(99))∫_0 ^∞    (t^((1/(99))−1) /(1+t))dt =(1/(99)) (π/(sin((π/(99))))) =(π/(99sin((π/(99)))))  ∫_0 ^1   (dx/(1+x^(99) )) =∫_0 ^1 Σ_(n=0) ^∞ (−1)^n  x^(99n) dx =Σ_(n=0) ^∞ (−1)^n  ∫_0 ^1  x^(99n)  dx  =Σ_(n=0) ^∞  (−1)^(n ) [(1/(99n+1)) x^(99n+1) ]_0 ^1  =Σ_(n=0) ^∞  (((−1)^n )/(99n+1))=S  =1−(1/(100)) +(1/(199)) −(1/(3.99+1)) +....⇒  Σ_(k=1) ^∞   (((−1)^(k−1) )/(99k−1)) =(π/(99sin((π/(99))))) −S
letI=1+dx1+x99cha7gementx=1tgiveI=0111+1t99(dtt2)=01t99t2(1+t99)dt=01t971+t99dt=01t97k=0(1)kt99kdt=k=0(1)k01t99k+97dt=k=0(1)k[199k+98t99k+98]01=k=0(1)k99k+98=k=p1p=1(1)p199(p1)+98=p=1(1)p199p1k=1(1)k199k1=1+dx1+x991+dx1+x99=10(.)dx+0dx1+x99=0dx1+x9901dx1+x99changementx=t199give0dx1+x99=011+t199t1991dt=1990t19911+tdt=199πsin(π99)=π99sin(π99)01dx1+x99=01n=0(1)nx99ndx=n=0(1)n01x99ndx=n=0(1)n[199n+1x99n+1]01=n=0(1)n99n+1=S=11100+119913.99+1+.k=1(1)k199k1=π99sin(π99)S

Leave a Reply

Your email address will not be published. Required fields are marked *