Menu Close

calculate-k-1-n-cos-a-2-k-and0-lt-a-lt-pi-then-find-the-value-of-lim-n-gt-k-1-n-ln-cos-a-2-k-




Question Number 26999 by abdo imad last updated on 01/Jan/18
calculate Π_(k=1) ^n cos((a/2^k ))  and0<a<π  then find the value of  lim_(n−>∝)  Σ_(k=1) ^n ln(cos((a/2^k ))).
calculatek=1ncos(a2k)and0<a<πthenfindthevalueoflimn>∝k=1nln(cos(a2k)).
Answered by prakash jain last updated on 01/Jan/18
Π_(k=1) ^n cos((a/2^k ))   =(1/(sin ((a/2^n ))))sin ((a/2^n ))Π_(k=1) ^n cos((a/2^k ))   =((sin a)/(2^n sin ((a/2^n ))))  lim_(n→∞) ((sin a)/(2^n sin ((a/2^n ))))  lim_(n→∞) ((sin a)/(((sin ((a/2^n )))/(a/2^7 ))∙a))=((sin a)/a)
nk=1cos(a2k)=1sin(a2n)sin(a2n)nk=1cos(a2k)=sina2nsin(a2n)limnsina2nsin(a2n)limnsinasin(a2n)a27a=sinaa

Leave a Reply

Your email address will not be published. Required fields are marked *