Menu Close

calculate-k-1-n-cos-a-2-k-and0-lt-a-lt-pi-then-find-the-value-of-lim-n-gt-k-1-n-ln-cos-a-2-k-




Question Number 26999 by abdo imad last updated on 01/Jan/18
calculate Π_(k=1) ^n cos((a/2^k ))  and0<a<π  then find the value of  lim_(n−>∝)  Σ_(k=1) ^n ln(cos((a/2^k ))).
$${calculate}\:\prod_{{k}=\mathrm{1}} ^{{n}} {cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\:\:{and}\mathrm{0}<{a}<\pi\:\:{then}\:{find}\:{the}\:{value}\:{of} \\ $$$${lim}_{{n}−>\propto} \:\sum_{{k}=\mathrm{1}} ^{{n}} {ln}\left({cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\right). \\ $$
Answered by prakash jain last updated on 01/Jan/18
Π_(k=1) ^n cos((a/2^k ))   =(1/(sin ((a/2^n ))))sin ((a/2^n ))Π_(k=1) ^n cos((a/2^k ))   =((sin a)/(2^n sin ((a/2^n ))))  lim_(n→∞) ((sin a)/(2^n sin ((a/2^n ))))  lim_(n→∞) ((sin a)/(((sin ((a/2^n )))/(a/2^7 ))∙a))=((sin a)/a)
$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\: \\ $$$$=\frac{\mathrm{1}}{\mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)}\mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\mathrm{cos}\left(\frac{{a}}{\mathrm{2}^{{k}} }\right)\: \\ $$$$=\frac{\mathrm{sin}\:{a}}{\mathrm{2}^{{n}} \mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{sin}\:{a}}{\mathrm{2}^{{n}} \mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{sin}\:{a}}{\frac{\mathrm{sin}\:\left(\frac{{a}}{\mathrm{2}^{{n}} }\right)}{\frac{{a}}{\mathrm{2}^{\mathrm{7}} }}\centerdot{a}}=\frac{\mathrm{sin}\:{a}}{{a}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *