Menu Close

calculate-k-1-n-k-4-interms-of-n-




Question Number 38640 by maxmathsup by imad last updated on 27/Jun/18
calculate Σ_(k=1) ^n k^4   interms of n.
calculatek=1nk4intermsofn.
Commented by math khazana by abdo last updated on 01/Jul/18
we have (k+1)^5 −k^5   =Σ_(p=0) ^5   C_5 ^p k^p  −k^5   1  + C_5 ^1 k  +C_5 ^2 k^2   +C_5 ^3  k^3   +C_5 ^4  k^4  +C_5 ^5 k^5  −k^5   =1 +5k  +10k^2   + 10k^3   +5 k^4  ⇒  Σ_(k=1) ^n {(k+1)^5  −k^5 }  =n +5 Σ_(k=1) ^n k +10 Σ_(k=1) ^n  k^2  +10 Σ_(k=1) ^n  k^3  +5Σ_(k=1) ^n k^4   (n+1)^5  =n+1 +5 ((n(n+1))/2) +10 ((n(n+1)(2n+1))/6)  +10 ((n^2 (n+1)^2 )/4) +5 Σ_(k=1) ^n  k^4  after calculus we find  Σ_(k=1) ^n  k^4 =(n^5 /5) +(n^4 /2) +(n^3 /3) −(n/(30)) .
wehave(k+1)5k5=p=05C5pkpk51+C51k+C52k2+C53k3+C54k4+C55k5k5=1+5k+10k2+10k3+5k4k=1n{(k+1)5k5}=n+5k=1nk+10k=1nk2+10k=1nk3+5k=1nk4(n+1)5=n+1+5n(n+1)2+10n(n+1)(2n+1)6+10n2(n+1)24+5k=1nk4aftercalculuswefindk=1nk4=n55+n42+n33n30.

Leave a Reply

Your email address will not be published. Required fields are marked *