Menu Close

calculate-k-2-ln-1-1-k-2-




Question Number 28619 by abdo imad last updated on 27/Jan/18
calculate  Σ_(k=2) ^(+∞)  ln(1−(1/k^2 )) .
calculatek=2+ln(11k2).
Commented by abdo imad last updated on 31/Jan/18
let put S_n = Σ_(k=2) ^n  ln(1−(1/k^2 ) ) and S=Σ_(k=2) ^( ∞)  ln(1−(1/k^2 ))  we have S=lim_(n→+∞ )  S_n   but  S_n =ln(Π_(k=2) ^n (1−(1/k^2 )))  but  Π_(k=2) ^n  (1−(1/k^2 ))= Π_(k=2) ^n  (((k^2 −1)/k^2 ))⇒ln(Π_(k=2) ^n (1−(1/k^2 )))  =Σ_(k=2) ^n ln(k−1) +Σ_(k=2) ^n ln(k+1) −2Σ_2 ^n  ln(k)  = Σ_(k=1) ^(n−1) ln(k) +Σ_(k=3) ^(n+1) ln(k) −2Σ_(k=2) ^n  ln(k)  =Σ_(k=2) ^n lnk −ln(n) +Σ_(k=2) ^n ln(k)−ln2+ln(n+1)−2Σ_(k=2) ^n ln(k)  =−ln(n)+ln(n+1) −ln2=ln(((n+1)/n)) −ln(2)  so lim_(n→+∞)  S_n = −ln(2)  = S  .
letputSn=k=2nln(11k2)andS=k=2ln(11k2)wehaveS=limn+SnbutSn=ln(k=2n(11k2))butk=2n(11k2)=k=2n(k21k2)ln(k=2n(11k2))=k=2nln(k1)+k=2nln(k+1)22nln(k)=k=1n1ln(k)+k=3n+1ln(k)2k=2nln(k)=k=2nlnkln(n)+k=2nln(k)ln2+ln(n+1)2k=2nln(k)=ln(n)+ln(n+1)ln2=ln(n+1n)ln(2)solimn+Sn=ln(2)=S.

Leave a Reply

Your email address will not be published. Required fields are marked *