calculate-k-2-ln-1-1-k-2- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 28619 by abdo imad last updated on 27/Jan/18 calculate∑k=2+∞ln(1−1k2). Commented by abdo imad last updated on 31/Jan/18 letputSn=∑k=2nln(1−1k2)andS=∑k=2∞ln(1−1k2)wehaveS=limn→+∞SnbutSn=ln(∏k=2n(1−1k2))but∏k=2n(1−1k2)=∏k=2n(k2−1k2)⇒ln(∏k=2n(1−1k2))=∑k=2nln(k−1)+∑k=2nln(k+1)−2∑2nln(k)=∑k=1n−1ln(k)+∑k=3n+1ln(k)−2∑k=2nln(k)=∑k=2nlnk−ln(n)+∑k=2nln(k)−ln2+ln(n+1)−2∑k=2nln(k)=−ln(n)+ln(n+1)−ln2=ln(n+1n)−ln(2)solimn→+∞Sn=−ln(2)=S. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-give-u-n-k-n-1-k-k-1-study-the-convergence-of-u-n-Next Next post: let-give-u-n-n-1-n-n-find-u-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.