Menu Close

calculate-L-e-2x-cos-pix-L-laplace-transform-




Question Number 96660 by mathmax by abdo last updated on 03/Jun/20
calculate L( e^(−2x)  cos(πx))   L laplace transform
calculateL(e2xcos(πx))Llaplacetransform
Answered by mathmax by abdo last updated on 04/Jun/20
L(e^(−2x)  cos(πx)) =∫_0 ^∞  e^(−2t)  cos(πt)e^(−xt)  dt  =∫_0 ^∞   e^(−(x+2)t)  cos(πt)dt =Re(∫_0 ^∞  e^(−(x+2)t)  e^(iπt) dt)  =Re(∫_0 ^∞  e^((−x−2 +iπ)t) dt) we have  ∫_0 ^∞  e^((−x−2 +iπ)t)  dt =[(1/(−x−2+iπ))  e^((−x−2+iπ)t) ]_0 ^(+∞)   =−(1/(−x−2+iπ)) =(1/(x+2−iπ)) =((x+2 +iπ)/((x+2)^2 +π^2 )) ⇒  L(e^(−2x)  cos(πx)) =((x+2)/((x+2)^2 +π^2 ))
L(e2xcos(πx))=0e2tcos(πt)extdt=0e(x+2)tcos(πt)dt=Re(0e(x+2)teiπtdt)=Re(0e(x2+iπ)tdt)wehave0e(x2+iπ)tdt=[1x2+iπe(x2+iπ)t]0+=1x2+iπ=1x+2iπ=x+2+iπ(x+2)2+π2L(e2xcos(πx))=x+2(x+2)2+π2

Leave a Reply

Your email address will not be published. Required fields are marked *