Menu Close

calculate-L-e-2x-sin-x-real-and-L-laplace-transform-




Question Number 60681 by maxmathsup by imad last updated on 24/May/19
calculate  L(e^(−2x) sin(αx))    α real   and L laplace transform
calculateL(e2xsin(αx))αrealandLlaplacetransform
Commented by maxmathsup by imad last updated on 26/May/19
L(e^(−2x) sin(αx)) =∫_0 ^∞   f(t)e^(−xt)  dt  =∫_0 ^∞   e^(−2t)  sin(αt) e^(−xt)  dt  =∫_0 ^∞   e^(−(x+2)t)  sin(αt)dt =Im(∫_0 ^∞   e^(−(x+2)t)  e^(iαt) dt)  ∫_0 ^∞   e^(−(x+2)t)  e^(iαt)  dt =∫_0 ^∞    e^((−(x+2) +iα)t) dt  =[(1/(−(x+2) +iα)) e^(−{(x+2)+iα}) ]_0 ^∞  =(1/(x+2−iα)) =((x+2 +iα)/((x+2)^2 +α^2 )) ⇒  L (e^(−2x)  sin(αx)) = (α/((x+2)^2  +α^2 )) .
L(e2xsin(αx))=0f(t)extdt=0e2tsin(αt)extdt=0e(x+2)tsin(αt)dt=Im(0e(x+2)teiαtdt)0e(x+2)teiαtdt=0e((x+2)+iα)tdt=[1(x+2)+iαe{(x+2)+iα}]0=1x+2iα=x+2+iα(x+2)2+α2L(e2xsin(αx))=α(x+2)2+α2.

Leave a Reply

Your email address will not be published. Required fields are marked *