calculate-L-e-2x-sin-x-real-and-L-laplace-transform- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60681 by maxmathsup by imad last updated on 24/May/19 calculateL(e−2xsin(αx))αrealandLlaplacetransform Commented by maxmathsup by imad last updated on 26/May/19 L(e−2xsin(αx))=∫0∞f(t)e−xtdt=∫0∞e−2tsin(αt)e−xtdt=∫0∞e−(x+2)tsin(αt)dt=Im(∫0∞e−(x+2)teiαtdt)∫0∞e−(x+2)teiαtdt=∫0∞e(−(x+2)+iα)tdt=[1−(x+2)+iαe−{(x+2)+iα}]0∞=1x+2−iα=x+2+iα(x+2)2+α2⇒L(e−2xsin(αx))=α(x+2)2+α2. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: study-the-integral-0-1-x-ln-1-x-dx-Next Next post: simplify-S-n-k-0-n-sin-k-x-cos-kx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.