Menu Close

calculate-L-sinxe-ax-with-a-gt-0-L-means-laplace-transform-




Question Number 42489 by maxmathsup by imad last updated on 26/Aug/18
calculate L (sinxe^(−ax) )   with a>0  L means laplace transform .
$${calculate}\:{L}\:\left({sinxe}^{−{ax}} \right)\:\:\:{with}\:{a}>\mathrm{0}\:\:{L}\:{means}\:{laplace}\:{transform}\:. \\ $$
Commented by maxmathsup by imad last updated on 27/Aug/18
L(sinx e^(−ax) )=∫_0 ^∞   sint e^(−at)  e^(−xt)  dt =L(f)(x)  = ∫_0 ^∞   sint e^(−(a+x)t)  dt =Im (∫_0 ^∞   e^(it −(a+x)t) dt)  but  ∫_0 ^∞     e^((i−a−x)t) dt = [(1/(i−a−x)) e^((i−a−x)t) ]_(t=0) ^(+∞)  =(1/(i−a−x))(−1)  =(1/(a+x −i)) =((a+x+i)/((a+x)^2  +1)) ⇒ L(sinx e^(−ax) ) = (1/((a+x)^2  +1)) .
$${L}\left({sinx}\:{e}^{−{ax}} \right)=\int_{\mathrm{0}} ^{\infty} \:\:{sint}\:{e}^{−{at}} \:{e}^{−{xt}} \:{dt}\:={L}\left({f}\right)\left({x}\right) \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:{sint}\:{e}^{−\left({a}+{x}\right){t}} \:{dt}\:={Im}\:\left(\int_{\mathrm{0}} ^{\infty} \:\:{e}^{{it}\:−\left({a}+{x}\right){t}} {dt}\right)\:\:{but} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\:{e}^{\left({i}−{a}−{x}\right){t}} {dt}\:=\:\left[\frac{\mathrm{1}}{{i}−{a}−{x}}\:{e}^{\left({i}−{a}−{x}\right){t}} \right]_{{t}=\mathrm{0}} ^{+\infty} \:=\frac{\mathrm{1}}{{i}−{a}−{x}}\left(−\mathrm{1}\right) \\ $$$$=\frac{\mathrm{1}}{{a}+{x}\:−{i}}\:=\frac{{a}+{x}+{i}}{\left({a}+{x}\right)^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow\:{L}\left({sinx}\:{e}^{−{ax}} \right)\:=\:\frac{\mathrm{1}}{\left({a}+{x}\right)^{\mathrm{2}} \:+\mathrm{1}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *