calculate-L-x-n-1-e-ax-n-1-then-conclude-L-1-1-a-x-n- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37364 by math khazana by abdo last updated on 12/Jun/18 calculateL{xn−1e−ax(n−1)!}thenconcludeL−1{1(a+x)n} Commented by prof Abdo imad last updated on 15/Jun/18 wehaveL{xn−1e−ax(n−1)!}=∫0∞tn−1e−at(n−1)!e−xtdt=1(n−1)!∫0∞tn−1e−(a+x)tdt=(a+x)t=u1(n−1)!∫0∞un−1(a+x)n−1e−udua+x=1(n−1)!(a+x)n∫0∞un−1e−udubutAn=∫0∞un−1e−udu=[1nune−u]0∞+∫0∞1nune−udu=1nAn+1⇒An+1=nAn⇒∏k=1n−1Ak+1=(n−1)!∏k=1n−1Ak⇒An=(n−1)!A1=(n−1)!⇒L{xn−1e−ax(n−1)!}=1(a+x)n⇒L−1(1(x+a)n)=xn−1e−ax(n−1)!. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: solve-y-xe-x-2-y-e-x-Next Next post: find-L-1-1-a-x-2-and-L-1-1-a-x-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.