Menu Close

calculate-L-x-n-1-e-ax-n-1-then-conclude-L-1-1-a-x-n-




Question Number 37364 by math khazana by abdo last updated on 12/Jun/18
calculate  L{ ((x^(n−1)  e^(−ax) )/((n−1)!))} then conclude  L^(−1) {  (1/((a+x)^n ))}
calculateL{xn1eax(n1)!}thenconcludeL1{1(a+x)n}
Commented by prof Abdo imad last updated on 15/Jun/18
we have L{((x^(n−1)  e^(−ax) )/((n−1)!))}=∫_0 ^∞    ((t^(n−1)  e^(−at) )/((n−1)!)) e^(−xt)  dt  =(1/((n−1)!))∫_0 ^∞    t^(n−1)  e^(−(a+x)t) dt  =_((a+x)t=u)    (1/((n−1)!))∫_0 ^∞    (u^(n−1) /((a+x)^(n−1) )) e^(−u)  (du/(a+x))  = (1/((n−1)!(a+x)^n )) ∫_0 ^∞     u^(n−1)  e^(−u)  du  but  A_n  =∫_0 ^∞  u^(n−1)  e^(−u)  du =[(1/n)u^n  e^(−u) ]_0 ^∞   +∫_0 ^∞   (1/n) u^n  e^(−u)  du = (1/n) A_(n+1)  ⇒  A_(n+1) =n A_n   ⇒ Π_(k=1) ^(n−1)  A_(k+1) =(n−1)! Π_(k=1) ^(n−1)  A_k   ⇒ A_n  = (n−1)! A_1 =(n−1)! ⇒  L{ ((x^(n−1)  e^(−ax) )/((n−1)!))} =  (1/((a+x)^n )) ⇒  L^(−1)  ((1/((x+a)^n ))) = ((x^(n−1)  e^(−ax) )/((n−1)!)) .
wehaveL{xn1eax(n1)!}=0tn1eat(n1)!extdt=1(n1)!0tn1e(a+x)tdt=(a+x)t=u1(n1)!0un1(a+x)n1eudua+x=1(n1)!(a+x)n0un1eudubutAn=0un1eudu=[1nuneu]0+01nuneudu=1nAn+1An+1=nAnk=1n1Ak+1=(n1)!k=1n1AkAn=(n1)!A1=(n1)!L{xn1eax(n1)!}=1(a+x)nL1(1(x+a)n)=xn1eax(n1)!.

Leave a Reply

Your email address will not be published. Required fields are marked *