Menu Close

Calculate-Li-2-z-Li-2-1-z-




Question Number 150718 by mathdanisur last updated on 14/Aug/21
Calculate:  Li_2 (z) + Li_2 (1 - z) = ?
Calculate:Li2(z)+Li2(1z)=?
Answered by Olaf_Thorendsen last updated on 14/Aug/21
Li(z) = −∫_0 ^z ((ln(1−u))/u) du   (1)  Li′(z) = −((ln(1−z))/z)  Li′(1−z) = −((lnz)/(1−z))  Li′(z)−Li′(1−z) = −[((ln(1−z))/z)−((lnz)/(1−z))]  Li′(z)−Li′(1−z) = −(d/dz)[lnz.ln(1−z)]  ⇒ Li(z)+Li(1−z) = −lnz.ln(1−z)+C (2)    With (1) : Li(z) = Σ_(k=1) ^∞ (z^k /k^2 )  Li(0) = Σ_(k=1) ^∞ (0^k /k^2 ) = 0  Li(1) = Σ_(k=1) ^∞ (1^k /k^2 ) = Σ_(k=1) ^∞ (1/k^2 ) = (π^2 /6)  (2) : Li(0^+ )+Li(1−0^+ ) = −ln0^+ .ln(1−0^+ )+C  0+(π^2 /6) = 0+C ⇒ C = (π^2 /6)    Li(z)+Li(1−z) = −lnz.ln(1−z)+(π^2 /6)
Li(z)=0zln(1u)udu(1)Li(z)=ln(1z)zLi(1z)=lnz1zLi(z)Li(1z)=[ln(1z)zlnz1z]Li(z)Li(1z)=ddz[lnz.ln(1z)]Li(z)+Li(1z)=lnz.ln(1z)+C(2)With(1):Li(z)=k=1zkk2Li(0)=k=10kk2=0Li(1)=k=11kk2=k=11k2=π26(2):Li(0+)+Li(10+)=ln0+.ln(10+)+C0+π26=0+CC=π26Li(z)+Li(1z)=lnz.ln(1z)+π26
Commented by Olaf_Thorendsen last updated on 14/Aug/21
(here Li is Li_2  of course)
(hereLiisLi2ofcourse)
Commented by mathdanisur last updated on 15/Aug/21
Thank you Ser cool
ThankyouSercool

Leave a Reply

Your email address will not be published. Required fields are marked *