Menu Close

calculate-lim-n-0-1-t-n-n-e-3t-dt-




Question Number 94659 by msup by abdo last updated on 20/May/20
calculate lim_(n→+∞) ∫_0 ^∞  (1−(t/n))^n  e^(−3t)  dt
calculatelimn+0(1tn)ne3tdt
Answered by mathmax by abdo last updated on 20/May/20
let A_n =∫_0 ^∞  (1−(t/n))^n  e^(−3t)  dt ⇒A_n =∫_R (1−(t/n))^n  e^(−3t)  χ_([0,+∞[)  (t)dt  =∫_R f_n (t) dt  we have  f_n →^(cs)   f =e^(−4t)     and ∣f_n ∣≤e^(−4t)  ⇒  theorem of convergence dominee give  lim_(n→+∞)  A_n =∫_R limf_n (t)dt =∫_0 ^∞  e^(−4t)  dt =[−(1/4)e^(−4t) ]_0 ^(+∞)  =(1/4)
letAn=0(1tn)ne3tdtAn=R(1tn)ne3tχ[0,+[(t)dt=Rfn(t)dtwehavefncsf=e4tandfn∣⩽e4ttheoremofconvergencedomineegivelimn+An=Rlimfn(t)dt=0e4tdt=[14e4t]0+=14

Leave a Reply

Your email address will not be published. Required fields are marked *