Menu Close

calculate-lim-n-0-dx-x-n-e-x-




Question Number 33694 by math khazana by abdo last updated on 22/Apr/18
calculate lim_(n→+∞)  ∫_0 ^∞    (dx/(x^n   +e^x ))  .
calculatelimn+0dxxn+ex.
Commented by math khazana by abdo last updated on 29/Apr/18
let put A_n = ∫_0 ^n        (dx/(x^n   +e^x ))    A_n = ∫_0 ^1     (dx/(x^n  +e^x ))  + ∫_1 ^n      (dx/(x^n   +e^x )) but  ∫_0 ^1     (dx/(x^n  +e^x ))→ ∫_0 ^1  e^(−x) dx=[−e^(−x) ]_0 ^1  = 1−(1/e)  ch. x^n =t give  ∫_1 ^n    (dx/(x^n  +e^x )) = ∫_1 ^n^n       (1/(t  + e^t^(1/n)  )) (1/n) t^((1/n)−1) dt  = (1/n) ∫_1 ^n^n        (t^(1/n) /(t^2  +t e^t^(1/n)  ))dt ≤ (1/n) ∫_1 ^(+∞)    (t^(1/n) /(t^2  +t e^t^(1/n)  ))dt  ≤ (1/n) ∫_1 ^(+∞)    (t^(1/n) /t^2 ) dt →0(n→+∞) so  lim_(n→+∞)  A_n =1−(1/e) .
letputAn=0ndxxn+exAn=01dxxn+ex+1ndxxn+exbut01dxxn+ex01exdx=[ex]01=11ech.xn=tgive1ndxxn+ex=1nn1t+et1n1nt1n1dt=1n1nnt1nt2+tet1ndt1n1+t1nt2+tet1ndt1n1+t1nt2dt0(n+)solimn+An=11e.

Leave a Reply

Your email address will not be published. Required fields are marked *