Menu Close

calculate-lim-n-0-e-nx-2-nx-1-x-3-




Question Number 147687 by mathmax by abdo last updated on 22/Jul/21
calculate lim_(n→0)  ((e^(−nx^2 ) −nx−1)/x^3 )
$$\mathrm{calculate}\:\mathrm{lim}_{\mathrm{n}\rightarrow\mathrm{0}} \:\frac{\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } −\mathrm{nx}−\mathrm{1}}{\mathrm{x}^{\mathrm{3}} } \\ $$
Answered by ArielVyny last updated on 23/Jul/21
e^U_n  −1∼U_n   (U_n →0)  lim_(n→0) ((e^(−nx^2 ) −1−nx)/x^3 )=lim_(n→0) ((−nx^2 −nx)/x^3 )=0  ((e^(−nx^2 ) −nx−1)/x^3 )=(((1/e^(nx^2 ) )−nx−1)/x^3 )=(1/(x^3 e^(nx^2 ) ))−((nx)/x^3 )−(1/x^3 )=(1/x^3 )−(1/x^3 )−(n/x^2 )=0 (n→0{
$${e}^{{U}_{{n}} } −\mathrm{1}\sim{U}_{{n}} \:\:\left({U}_{{n}} \rightarrow\mathrm{0}\right) \\ $$$${lim}_{{n}\rightarrow\mathrm{0}} \frac{{e}^{−{nx}^{\mathrm{2}} } −\mathrm{1}−{nx}}{{x}^{\mathrm{3}} }={lim}_{{n}\rightarrow\mathrm{0}} \frac{−{nx}^{\mathrm{2}} −{nx}}{{x}^{\mathrm{3}} }=\mathrm{0} \\ $$$$\frac{{e}^{−{nx}^{\mathrm{2}} } −{nx}−\mathrm{1}}{{x}^{\mathrm{3}} }=\frac{\frac{\mathrm{1}}{{e}^{{nx}^{\mathrm{2}} } }−{nx}−\mathrm{1}}{{x}^{\mathrm{3}} }=\frac{\mathrm{1}}{{x}^{\mathrm{3}} {e}^{{nx}^{\mathrm{2}} } }−\frac{{nx}}{{x}^{\mathrm{3}} }−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }=\frac{\mathrm{1}}{{x}^{\mathrm{3}} }−\frac{\mathrm{1}}{{x}^{\mathrm{3}} }−\frac{{n}}{{x}^{\mathrm{2}} }=\mathrm{0}\:\left({n}\rightarrow\mathrm{0}\left\{\right.\right. \\ $$$$ \\ $$
Answered by mathmax by abdo last updated on 23/Jul/21
e^(−nx^2 ) ∼1−nx^2    (n→0) ⇒e^(−nx^2 ) −nx−1 ∼1−nx^2 −nx−1  =−nx^2 −nx ⇒((e^(−nx^2 ) −nx−1)/x^3 )∼((−nx^2 −nx)/x^3 )=−(n/x)−(n/x^2 )→0 ⇒  lim_(n→0)   ((e^(−nx^2 ) −nx−1)/x^2 )=0
$$\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } \sim\mathrm{1}−\mathrm{nx}^{\mathrm{2}} \:\:\:\left(\mathrm{n}\rightarrow\mathrm{0}\right)\:\Rightarrow\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } −\mathrm{nx}−\mathrm{1}\:\sim\mathrm{1}−\mathrm{nx}^{\mathrm{2}} −\mathrm{nx}−\mathrm{1} \\ $$$$=−\mathrm{nx}^{\mathrm{2}} −\mathrm{nx}\:\Rightarrow\frac{\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } −\mathrm{nx}−\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }\sim\frac{−\mathrm{nx}^{\mathrm{2}} −\mathrm{nx}}{\mathrm{x}^{\mathrm{3}} }=−\frac{\mathrm{n}}{\mathrm{x}}−\frac{\mathrm{n}}{\mathrm{x}^{\mathrm{2}} }\rightarrow\mathrm{0}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow\mathrm{0}} \:\:\frac{\mathrm{e}^{−\mathrm{nx}^{\mathrm{2}} } −\mathrm{nx}−\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *